This study deals with utilization of the hyaluronic acid (HA) and carbonyl iron (CI) microparticles to fabricate the magneto-responsive hydrogel scaffolds that can provide triggered functionality upon application of an external magnetic field. The various combinations of the HA and CI were investigated from the rheological and viscoelastic point of view to clearly show promising behavior in connection to 3D printing. Furthermore, the swelling capabilities with water diffusion kinetics were also elucidated. Magneto-responsive performance of bulk hydrogels and their noncytotoxic nature were investigated,, and all hydrogels showed cell viability in the range 75-85%. The 3D printing of such developed systems was successful, and fundamental characterization of the scaffolds morphology (SEM and CT) has been presented. The magnetic activity of the final scaffolds was confirmed at a very low magnetic field strength of 140 kA/m, and such a scaffold also provides very good biocompatibility with NIH/3T3 fibroblasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577426PMC
http://dx.doi.org/10.1021/acsabm.4c00567DOI Listing

Publication Analysis

Top Keywords

hyaluronic acid
8
acid carbonyl
8
carbonyl iron
8
iron microparticles
8
magnetic field
8
smart biopolymer
4
scaffolds
4
biopolymer scaffolds
4
scaffolds based
4
based hyaluronic
4

Similar Publications

Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.

View Article and Find Full Text PDF

Background: Regenerative endodontics' primary objective is to establish a favorable environment in the root canal by removing infection, providing a sturdy scaffold, and sealing the apical end of the tooth tightly. These actions should promote pulp regeneration and root development.

Aim: This study evaluated histologically the regenerative potential of injectable hyaluronic acid (HA) hydrogel or collagen with blood clot as scaffolds during revascularization of immature necrotic dog's teeth.

View Article and Find Full Text PDF

Purpose: During breast cancer surgery, the use of dyes such as indigo carmine, methylene blue, or indocyanine green (ICG) for targeting axillary lymph nodes (ALNs) under ultrasound guidance can result in rapid diffusion, complicated tissue differentiation, and disruption of staining. LuminoMark™, a novel ICG-hyaluronic acid mixture, can provide real-time visualization and minimize dye spread, thereby ensuring a clear surgical field. The aim of our study was to evaluate the efficacy of LuminoMark™ for targeting ALNs in patients with breast cancer.

View Article and Find Full Text PDF

Drug resistance is an important factor for prostate cancer (PCa) to progress into refractory PCa, and abnormal lipid metabolism usually occurs in refractory PCa, which presents great challenges for PCa therapy. Here, a cluster of differentiation 36 (CD36) inhibitor sulfosuccinimidyl oleate sodium (CD36i) and stearoyl-CoA desaturase 1 (SCD1) siRNA (siSCD1) are selected to inhibit lipid uptake and synthesis in PCa, respectively. To this end, a multiresponsive drug delivery nanosystem, HA@CD36i-TR@siSCD1 is designed.

View Article and Find Full Text PDF

Dermal fillers such as hyaluronic acid (HA) have been widely used in recent years as a less surgically invasive cosmetic treatment. Although delayed foreign body granuloma may occur as a rare adverse reaction after the procedure, detailed histological reports are still limited. When occurring on the buccal mucosa of the oral cavity, the histopathology may resemble some lesions of minor salivary gland origin due to the material properties of HA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!