Background: This study investigates the effects of accelerated high-frequency repetitive transcranial magnetic stimulation (aHF-rTMS), applied to the left dorsolateral prefrontal cortex (DLPFC), on locus coeruleus (LC) functional connectivity in the treatment of refractory medication-resistant major depression (MRD).

Methods: We studied 12 antidepressant-free refractory MRD patients, focusing on how aHF-rTMS affects the LC, a central component of the brain's noradrenergic system and key to mood regulation and stress response.

Results: A stronger decrease in LC functional connectivity following aHF-rTMS treatment resulted in better clinical improvement. We observed such LC functional connectivity decreases with several brain regions, including the superior frontal gyrus, precentral gyrus, middle occipital gyrus, and cerebellum. Moreover, our exploratory analyses hint at a possible role for E-field modeling in forecasting clinical outcomes. Additional analyses suggest potential genetic and dopaminergic factors influencing changes in LC functional connectivity in relation to clinical response.

Conclusions: The findings of this study underscore the pivotal role of the LC in orchestrating higher cognitive functions through its extensive connections with the prefrontal cortices, facilitating decision-making, influencing attention, and addressing depressive rumination. Additionally, the observed enhancement in LC-(posterior) cerebellar connectivity not only highlights the cerebellum's role in moderating clinical outcomes through noradrenergic system modulation but also suggests its potential as a predictive marker for aHF-rTMS efficacy. These results reveal new insights into the neural mechanisms of refractory depression and suggest therapeutic targets for enhancing noradrenergic activity, thereby addressing both cognitive and psychomotor symptoms associated with the disorder.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730058PMC
http://dx.doi.org/10.1192/j.eurpsy.2024.1769DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
major depression
8
locus coeruleus
8
noradrenergic system
8
clinical outcomes
8
connectivity
6
exploring potential
4
potential working
4
working mechanisms
4
mechanisms accelerated
4

Similar Publications

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Background And Objectives: Cognitive deficits represent a major long-term complication of anti-leucine-rich, glioma-inactivated 1 encephalitis (LGI1-E). Although severely affecting patient outcomes, the structural brain changes underlying these deficits remain poorly understood. In this study, we hypothesized a link between white matter (WM) networks and cognitive outcomes in LGI1-E.

View Article and Find Full Text PDF

European ILD registry algorithm for self-assessment in interstitial lung diseases (eurILDreg ASA-ILD).

PLoS One

January 2025

European IPF/ILD Registry and Biobank (eurIPFreg/bank, eurILDreg/bank), Giessen, Germany.

Background And Aims: Predicting progression and prognosis in Interstitial Lung Diseases (ILD), especially Idiopathic Pulmonary Fibrosis (IPF) and Progressive Pulmonary Fibrosis (PPF), remains a challenge. Integrating patient-centered measurements is essential for earlier and safer detection of disease progression. Home monitoring through e-health technologies, such as spirometry and oximetry connected to smartphone applications, holds promise for early detection of ILD progression or acute exacerbations, enabling timely therapeutic interventions.

View Article and Find Full Text PDF

Solvent-Environment Dependence of the Excess Chemical Potential and Its Computation Scheme Formulated through Error Minimization.

J Chem Theory Comput

January 2025

Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Solvent environment may significantly affect the equilibria involving flexible solute species, such as proteins and polymers. In the present work, a computation scheme is formulated for the change in the excess chemical potential of a flexible solute molecule upon variation of the solvent condition. The formulation adopts the scheme of error minimization in parallel to the method of Bennett acceptance ratio, and an exact expression is presented that provides the change in the excess chemical potential from solvation free energies computed in two solvent conditions of interest.

View Article and Find Full Text PDF

The mushroom body (MB) is the center for associative learning in insects. In , intersectional split-GAL4 drivers and electron microscopy (EM) connectomes have laid the foundation for precise interrogation of the MB neural circuits. However, investigation of many cell types upstream and downstream of the MB has been hindered due to lack of specific driver lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!