Although chemotherapy with magnetic nanocarriers has witnessed significant advancement in the field of cancer treatment, multimodal diagnosis and combinatorial therapy using a single nanoplatform will have much better efficacy in achieving superior results. Herein, we constructed a smart theranostic system by combining pH-sensitive tartaric acid-stabilized FeO magnetic nanocarriers (TMNCs) with SPECT imaging and a chemotherapeutic agent for image-guided chemo-hyperthermia therapy. The carboxyl-enriched exteriors of TMNCs provided sites for the conjugation of a chemotherapeutic drug (doxorubicin hydrochloride, DOX) and radiolabeling (Ce). The usage of 145.4 keV gamma rays made this platform an ideal choice for SPECT-CT imaging, showing the retention of the nanoformulation in the tumor site even after 28 days. Further, TMNCs showed a very high transverse relaxation rate () of 171 mM s, which is higher than that of clinically approved magnetic resonance imaging (MRI) contrast agents such as ferumoxtran (65 mM s) and ferumoxides (120 mM s). Further, the developed drug-loaded hybrid platform showed significantly higher cytotoxicity towards breast cancer cells, which was augmented by magnetic hyperthermia. Bright-field microscopy and cell cycle analysis suggested that cell death occurred through induction of G2-M arrest and subsequent apoptosis. These findings clearly suggest the potential of the developed hybrid nanoplatform for image-guided combination therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb00980kDOI Listing

Publication Analysis

Top Keywords

magnetic nanocarriers
12
image-guided chemo-hyperthermia
8
chemo-hyperthermia therapy
8
ph-responsive magnetic
4
nanocarriers chelator-free
4
chelator-free bimodal
4
bimodal mri/spect-ct
4
mri/spect-ct image-guided
4
therapy
4
therapy human
4

Similar Publications

Nanotechnology for the Diagnosis and Treatment of Liver Cancer.

Int J Nanomedicine

December 2024

Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, People's Republic of China.

Liver cancer has become a major global health challenge due to its high incidence, high rate of late diagnosis and limited treatment options. Although there are many clinical treatments available for liver cancer, the cure rate is still very low, and now researchers have begun to explore new aspects of liver cancer treatment, and nanotechnology has shown great potential for improving diagnostic accuracy and therapeutic efficacy and is therefore a promising treatment option. In diagnosis, nanomaterials such as gold nanoparticles, magnetic nanoparticles, and silver nanoparticles can realize highly sensitive and specific detection of liver cancer biomarkers, supporting diagnosis and real-time monitoring of the disease process.

View Article and Find Full Text PDF

Ovarian cancer remains one of the main causes of human mortality, accounting for millions of deaths every year. Despite of several clinical options such as chemotherapy, photodynamic therapy (PDT), hormonal treatment, radiation therapy, and surgery to manage this disease, the mortality rate is still very high. This alarming statistic highlights the urgent need for innovative approaches to improve both diagnosis and treatment.

View Article and Find Full Text PDF

In this study, the mesoporous FeO nanodrug carriers containing disulfide bonds (CHO-SMNPs) were successfully synthesized and characterized. Doxorubicin (DOX) was loaded onto the CHO-SMNPs as a model drug and gatekeeper through the formation of imine bonds with the aldehyde groups on the surface of the mesoporous materials. This drug carrier demonstrates effective drug release triggered by pH, glutathione (GSH), and near-infrared (NIR) light, along with satisfactory photothermal conversion efficiency under NIR irradiation at 808 nm.

View Article and Find Full Text PDF

Methotrexate (MTX) is a widely used antimetabolite drug, mainly used in the treatment of a variety of cancer. Given the low therapeutic index and significant individual variability of MTX, it was critical to perform therapeutic drug monitoring (TDM) to minimize the side effects. Here, we designed a rapid and sensitive fluorescence/colorimetric assay for the detection of MTX in diluted human serum.

View Article and Find Full Text PDF

The chemical structure of a delivery nanovehicle plays a pivotal role in determining the efficiency of drug delivery within the body. Leveraging the unique architecture of bottlebrush (BB) polymers-characterized by variations in backbone length, grafting density, and self-assembly morphology-offers a novel approach to understanding the influence of structural properties on biological behavior. In this study, developed a drug delivery system based on core-shell BB polymers synthesized using a "grafting-from" strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!