A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Circulating miRNAs and Machine Learning for Lateralizing Primary Aldosteronism. | LitMetric

Background: Distinguishing between unilateral and bilateral primary aldosteronism, a major cause of secondary hypertension, is crucial due to different treatment approaches. While adrenal venous sampling is the gold standard, its invasiveness, limited availability, and often difficult interpretation pose challenges. This study explores the utility of circulating microRNAs (miRNAs) and machine learning in distinguishing between unilateral and bilateral forms of primary aldosteronism.

Methods: MiRNA profiling was conducted on plasma samples from 18 patients with primary aldosteronism taken during adrenal venous sampling on an Illumina MiSeq platform. Bioinformatics and machine learning identified 9 miRNAs for validation by reverse transcription real-time quantitative polymerase chain reaction. Validation was performed on a cohort consisting of 108 patients with known subdifferentiation. A 30-patient subset of the validation cohort involved both adrenal venous sampling and peripheral, the rest only peripheral samples. A neural network model was used for feature selection and comparison between adrenal venous sampling and peripheral samples, while a deep-learning model was used for classification.

Results: Our model identified 10 miRNA combinations achieving >85% accuracy in distinguishing unilateral primary aldosteronism and bilateral adrenal hyperplasia on a 30-sample subset, while also confirming the suitability of peripheral samples for analysis. The best model, involving 6 miRNAs, achieved an area under curve of 87.1%. Deep learning resulted in 100% accuracy on the subset and 90.9% sensitivity and 81.8% specificity on all 108 samples, with an area under curve of 86.7%.

Conclusions: Machine learning analysis of circulating miRNAs offers a minimally invasive alternative for primary aldosteronism lateralization. Early identification of bilateral adrenal hyperplasia could expedite treatment initiation without the need for further localization, benefiting both patients and health care providers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578053PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.124.23418DOI Listing

Publication Analysis

Top Keywords

primary aldosteronism
20
machine learning
16
adrenal venous
16
venous sampling
16
distinguishing unilateral
12
peripheral samples
12
circulating mirnas
8
mirnas machine
8
unilateral bilateral
8
sampling peripheral
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!