Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Adjoint modeling, using U.S. EPA's Community Multiscale Air Quality (CMAQ), has been performed to provide location-specific monetized health benefits from the controls of primary PM and PM precursors (NO , SO, and NH) across North America. Source-to-health benefit relationships are quantified using a benefit-per-ton (BPT) metric, accounting for the impacts on premature mortality due to long-term exposure to fine particulate matter. In the base analysis, the approach used a 12 km resolution, four 2-week episodes chosen to capture annual responses, emissions for 2016, and the Global Exposure Mortality Model (GEMM) to link exposures to premature mortality. Here, we investigate the impacts those choices have on results using a range of sensitivity analyses. The choice of four representative episodes led to relatively little bias and error. Finer model resolution, investigated by comparing 36, 12, 4, and 1 km simulations over two urban areas, tended to increase BPT estimates, though the impact was inconsistent between different regions. While BPTs and burden estimates were consistent across resolutions over New York City, they sharply increased for Los Angeles, particularly for NOx and ammonia, leading to 90% increase in burden estimates at 1 km resolution. We find that, for primary PM emissions, better resolved population distribution is the main contributing factor to higher BPTs, but for secondary precursor emissions (ammonia and NOx), higher model resolution that avoids dilution in coarser grids is more important. Changing emissions from 2016 to 2001 and 2028 resulted in fairly consistent primary PM BPTs but impacted the BPTs for NOx and ammonia more significantly due to changes in SO emissions. We found that BPTs tend to stabilize, as emission changes in 2028 lead to a lower deviation from 2016 BPTs compared to changes from the 2001 episode. The role of the epidemiological model also led to relatively modest uncertainties, 15-30% depending on the species, even when different shapes of concentration-response functions were employed. We found the impact of the choice of CRF to be larger or comparable in size to the reported epidemiological model uncertainties for log-linear CRFs. The adjoining approach proved robust to modeling choices in providing BPT estimates that are highly granular across locations and emitted species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474814 | PMC |
http://dx.doi.org/10.1021/acsestair.4c00128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!