Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Scented volatile chemical products (sVCPs) are frequently used indoors. We conducted field measurements in a residential building to investigate new particle formation (NPF) from sVCP emissions. State-of-the-art instrumentation was used for real-time monitoring of indoor atmospheric nanocluster aerosol (NCA; 1-3 nm particles) size distributions and terpene mixing ratios. We integrated our NCA measurements with a comprehensive material balance model to analyze sVCP-nucleated indoor NCA dynamics. Our results reveal that sVCPs significantly increase indoor terpene mixing ratios (10-1,000 ppb), exceeding those in outdoor forested environments. The emitted terpenes react with indoor atmospheric O and initiate indoor NPF, resulting in nucleation rates as high as ∼10 cm s and condensational growth rates up to 300 nm h; these are orders of magnitude higher than those reported during outdoor NPF events. Notably, high particle nucleation rates significantly increase indoor atmospheric NCA concentrations (10-10 cm), and high growth rates drive their survival and growth to sizes that efficiently reach the deepest regions of the human respiratory system. We found sVCP-nucleated NCA to cause respiratory exposures and dose rates comparable to or exceeding those from primary aerosol sources such as gas stoves and diesel engines, highlighting their significant impact on indoor atmospheric environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11474976 | PMC |
http://dx.doi.org/10.1021/acsestair.4c00118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!