Cerebral small vessel disease (SVD), as defined by neuroimaging characteristics such as white matter hyperintensities (WMHs), cerebral microhemorrhages (CMHs), and lacunar infarcts, is highly prevalent and has been associated with dementia risk and other clinical sequelae. Although conditions such as hypertension are known to contribute to SVD, little is known about the diverse set of subclinical biological processes and molecular mediators that may also influence the development and progression of SVD. To better understand the mechanisms underlying SVD and to identify novel SVD biomarkers, we used a large-scale proteomic platform to relate 4,877 plasma proteins to MRI-defined SVD characteristics within 1,508 participants of the Atherosclerosis Risk in Communities (ARIC) Study cohort. Our proteome-wide analysis of older adults (mean age: 76) identified 13 WMH-associated plasma proteins involved in synaptic function, endothelial integrity, and angiogenesis, two of which remained associated with late-life WMH volume when measured nearly 20 years earlier, during midlife. We replicated the relationship between 9 candidate proteins and WMH volume in one or more external cohorts; we found that 11 of the 13 proteins were associated with risk for future dementia; and we leveraged publicly available proteomic data from brain tissue to demonstrate that a subset of WMH-associated proteins was differentially expressed in the context of cerebral atherosclerosis, pathologically-defined Alzheimer's disease, and cognitive decline. Bidirectional two-sample Mendelian randomization analyses examined the causal relationships between candidate proteins and WMH volume, while pathway and network analyses identified discrete biological processes (lipid/cholesterol metabolism, NF-kB signaling, hemostasis) associated with distinct forms of SVD. Finally, we synthesized these findings to identify two plasma proteins, oligodendrocyte myelin glycoprotein (OMG) and neuronal pentraxin receptor (NPTXR), as top candidate biomarkers for elevated WMH volume and its clinical manifestations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11483013PMC
http://dx.doi.org/10.1101/2024.10.07.24314972DOI Listing

Publication Analysis

Top Keywords

wmh volume
16
plasma proteins
12
proteome-wide analysis
8
cerebral small
8
small vessel
8
vessel disease
8
biological processes
8
candidate proteins
8
proteins wmh
8
svd
7

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

The Mind Research Network, Albuquerque, NM, USA.

Background: In recent efforts to improve early identification, staging, and prediction of risk of persons at risk for vascular contributions to cognitive impairment and dementia (VCID) in relation with small vessel disease (SVD), the MarkVCID consortium has worked to identify and validate fluid- and imaging-based biomarkers for SVD associated with VCID. Free water (FW) measured derived from diffusion tensor imaging and one of the selected neuroimaging biomarker "kits", has been demonstrated to have excellent instrumental validity and to be a sensitive biomarker of cognitive performances. We sought to further examine FW clinical relevance by investigating whether FW predicts cognitive worsening over time.

View Article and Find Full Text PDF

Background: To aid development of prevention strategies, we investigated whether a composite measure of late-midlife lifestyle health was associated with (1) change in brain tau burden, vascular burden and neurodegeneration and (2) cognitive trajectories when accounting for these brain changes.

Method: We included 324 individuals from the Wisconsin Registry for Alzheimer's Prevention. Late-midlife lifestyle was assessed using the Lifestyle for Brain Health (LIBRA) score, encompassing 12 risk-and protective factors for cognitive decline and dementia.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Neuroimage Analytics Laboratory and Glenn Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA.

Background: The location of proposed brain MRI markers of small vessel disease (SVD) might reflect their pathogenesis and may translate into differential associations with cognition. We derived regional MRI markers of SVD and studied: (i) associations with cognitive performance, (ii) patterns most likely to reflect underlying SVD, (iii) mediating effects on the relationships of age and cardiovascular disease (CVD) risk with cognition.

Method: In 891 participants from The Multi-Ethnic Study of Atherosclerosis, we segmented enlarged perivascular spaces (ePVS), white matter hyperintensities (WMH) and microbleeds (MBs) using deep learning-based algorithms, and calculated white matter (WM) microstructural integrity measures of fractional anisotropy (FA), trace (TR) and free water (FW) using automated DTI-processing pipelines.

View Article and Find Full Text PDF

Biomarkers.

Alzheimers Dement

December 2024

Washington University in St. Louis, School of Medicine, St. Louis, MO, USA.

Background: Autosomal dominant Alzheimer disease (ADAD) is characterized by genetic mutations affecting the beta-amyloid (Aβ) pathway. However, vascular and immune factors play important roles which are not completely understood. Understanding the function of the neurovascular unit (NVU) comprised of neurons, glial cells, and vasculature, at different disease stages appears ideal to developing and evaluating therapeutics.

View Article and Find Full Text PDF

Background: White matter hyperintensities (WMH) were reported to contribute to the thinning of regional cortex connected to WMH in cerebral small vessel disease. However, the relationship between WMH and regional changes in WMH-connected cortex in Alzheimer's disease (AD) remains unclear. The objective of this study is to investigate the association between WMH and regional cortical thickness, amyloid and tau deposition, and synaptic density changes in the WMH-connected cortex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!