Implicit motor imagery: examining motor vs. visual strategies in laterality judgments among older adults.

Front Psychol

Faculty of Arts, Department of Psychology, University of Manitoba, Winnipeg, MB, Canada.

Published: October 2024

Cognitive states like motor imagery (MI; simulating actions without overtly executing them) share a close correspondence with action execution, and hence, activate the motor system in a similar way. However, as people age, reduction in specific cognitive abilities like motor action simulation and action planning/prediction are commonly experienced. The present study examined the effect of visual-spatial processing for both typical and challenging upper-limb movements using the Hand Laterality Judgment Task (HLJT), in which participants were asked to judge whether the depicted hand is a left or right hand. Several main findings emerged: (1) Compared to younger adults, older adults exhibited slower responses and greater error rates in both Experiment 1 and 2. This suggests that visual-spatial transformations undergo alterations with age; (2) Older adults displayed higher error rates with realistic hands at both back and palm viewpoints of the hands compared to younger adults. However, this pattern did not hold for response times; (3) Participants responded faster to medial hand orientations (i.e., closer to the midline of the body) compared to lateral hand orientations (i.e., farther from the midline of the body) for palm-views in both Experiment 1 and Experiment 2. Given that we observed better performance on medial orientations compared to lateral orientations, this suggests that participants follow the same motor rules and biomechanical constraints of the represented movement. Novel information is provided about differences in individuals' use of strategies (visual vs. motor imagery) to solve the HLJT for both mannequin and real hands.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481337PMC
http://dx.doi.org/10.3389/fpsyg.2024.1445152DOI Listing

Publication Analysis

Top Keywords

motor imagery
12
older adults
12
compared younger
8
younger adults
8
error rates
8
hand orientations
8
midline body
8
compared lateral
8
motor
6
adults
5

Similar Publications

Exoskeleton Training for Spinal Cord Injury Neuropathic Pain (ExSCIP): Protocol for a Phase 2 Feasibility Randomised Trial.

HRB Open Res

September 2024

UCD School of Public Health, Physiotherapy and Sports Science, Health Sciences Centre, University College Dublin, Dublin, Leinster, Ireland.

Background: Following Spinal Cord Injury (SCI), 53% of people develop neuropathic pain (NP). NP can be more debilitating than other consequences of SCI, and a persistent health issue. Pharmacotherapies are commonly recommended for NP management in SCI, although severe pain often remains refractory to these treatments in many sufferers.

View Article and Find Full Text PDF

Improved motor imagery skills after repetitive passive somatosensory stimulation: a parallel-group, pre-registered study.

Front Neural Circuits

January 2025

Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.

Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.

View Article and Find Full Text PDF

Background: Physicians practicing in pediatric critical care medicine (PCCM) should maintain procedural skills competency. Faculty practicing in academic centers face challenges that may affect their procedural skills maintenance. The overall clinical opportunities are decreasing in PCCM.

View Article and Find Full Text PDF

Overview of Effects of Motor Learning Strategies in Neurologic and Geriatric Populations: A Systematic Mapping Review.

Arch Rehabil Res Clin Transl

December 2024

Research Centre for Nutrition, Lifestyle and Exercise, School of Physiotherapy, Zuyd University of Applied Sciences, Faculty of Health, Heerlen, The Netherlands.

Objective: To provide a broad overview of the current state of research regarding the effects of 7 commonly used motor learning strategies to improve functional tasks within older neurologic and geriatric populations.

Data Sources: PubMed, CINAHL, and Embase were searched.

Study Selection: A systematic mapping review of randomized controlled trials was conducted regarding the effectiveness of 7 motor learning strategies-errorless learning, analogy learning, observational learning, trial-and-error learning, dual-task learning, discovery learning, and movement imagery-within the geriatric and neurologic population.

View Article and Find Full Text PDF

In recent years, the utilization of motor imagery (MI) signals derived from electroencephalography (EEG) has shown promising applications in controlling various devices such as wheelchairs, assistive technologies, and driverless vehicles. However, decoding EEG signals poses significant challenges due to their complexity, dynamic nature, and low signal-to-noise ratio (SNR). Traditional EEG pattern recognition algorithms typically involve two key steps: feature extraction and feature classification, both crucial for accurate operation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!