The extensive use of chemical dyes, primarily Azo and anthraquinone dyes, in textiles has resulted in their alarming release into the environment by textile industries. The introduction of heavy metals into these dyes leads to an increase in Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), and water toxicity. Conventional physicochemical methods for treating textile effluents are costly and energy-intensive. Here introduction of new strategies is eminent, microbial bioremediation for the biodegradation and detoxification of these hazardous dyes, possesses as an innovative solution for the existing problem, discussed are specific groups of bacteria, fungi, and algae which could be one of the potential decolorizing agents that could replace the majority of other expensive processes in textile wastewater treatment by using enzymes like peroxidase, laccase, and azoreductase. These enzymes catalyzes chemical reactions that break down the dye molecules into less harmful substances. Additionally, novel strategies and advancements to enhance the effectiveness of these microbes and their products are comprehensively discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446375 | PMC |
http://dx.doi.org/10.1016/j.biotno.2023.10.001 | DOI Listing |
Crit Care Explor
January 2025
Division of Cardiovascular Critical Care Medicine, Department of Cardiology, Boston Children's Hospital, Boston, MA.
Background: Accurate assessment of oxygen delivery relative to oxygen demand is crucial in the care of a critically ill patient. The central venous oxygen saturation (Svo) enables an estimate of cardiac output yet obtaining these clinical data requires invasive procedures and repeated blood sampling. Interpretation remains subjective and vulnerable to error.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
The CardioVascular Center, Tufts Medical Center, Boston, MA (S.L.H., K.D.E., G.G., N.K.K.).
The integrative physiology of the left ventricle and systemic circulation is fundamental to our understanding of advanced heart failure and cardiogenic shock. In simplest terms, any increase in aortic stiffness increases the vascular afterload presented to the failing left ventricle. The net effect is increased myocardial oxygen demand and reduced coronary perfusion pressure, thereby further deteriorating contractile function.
View Article and Find Full Text PDFSmall Methods
January 2025
Department of Electronic Engineering, College of Electronics and Information, Kwangwoon University, Nowon-gu, Seoul, 01897, South Korea.
Wide spread adaptation of green hydrogen can help to mitigate the serious climate issues, increasing global energy demands and the development of advanced electrocatalysts robust under industrial conditions is one of the key technological challenges. Herein, chromium-doped nickel-boride-phosphide (Cr/NiBP) micro sphere (MS) electrocatalyst is demonstrated via a two-step hydrothermal approach along with post-annealing. The Cr/NiBP MS demonstrates low hydrogen evolution reaction and oxygen evaluation reaction over potentials of 78 and 250 mV at 100 mA cm in 1 m KOH, out performing most of the reported catalysts.
View Article and Find Full Text PDFJ Food Sci
January 2025
Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA.
We evaluated the antimicrobial performance of sodium hypochlorite (NaOCl) and peracetic acid (PAA) during washing of baby spinach in water of varying levels of organic load, as measured by its chemical oxygen demand (COD). Escherichia coli TVS353 was spot inoculated onto one unwashed leaf. Sanitizers were added into water with preadjusted COD (300 or 2500 ppm) to achieve concentrations from 20 to 80 ppm.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China. Electronic address:
The production scalability and increasing demand for black phosphorus nanosheets (BPNSs) inevitably lead to environmental leakage. Although BPNSs' ecotoxicological effects have been demonstrated, their indirect health risks, such as inducing increased resistance in pathogenic bacteria, are often overlooked. This study explores the influence of BPNSs on the horizontal gene transfer of antibiotic resistance genes (ARGs) facilitated by the RP4 plasmid, which carries multiple resistance genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!