Non-Hermitian dynamics, as observed in photonic, atomic, electrical and optomechanical platforms, holds great potential for sensing applications and signal processing. Recently, fully tuneable non-reciprocal optical interaction has been demonstrated between levitated nanoparticles. Here we use this tunability to investigate the collective non-Hermitian dynamics of two non-reciprocally and nonlinearly interacting nanoparticles. We observe parity-time symmetry breaking and, for sufficiently strong coupling, a collective mechanical lasing transition in which the particles move along stable limit cycles. This work opens up a research avenue of non-equilibrium multi-particle collective effects, tailored by the dynamic control of individual sites in a tweezer array.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11473371PMC
http://dx.doi.org/10.1038/s41567-024-02589-8DOI Listing

Publication Analysis

Top Keywords

non-hermitian dynamics
12
dynamics non-reciprocity
4
non-reciprocity optically
4
optically coupled
4
coupled nanoparticles
4
nanoparticles non-hermitian
4
dynamics observed
4
observed photonic
4
photonic atomic
4
atomic electrical
4

Similar Publications

Observation of quantum strong Mpemba effect.

Nat Commun

January 2025

Institute for Quantum Science and Technology, College of Science, National University of Defense Technology, Changsha, China.

An ancient and counterintuitive phenomenon known as the Mpemba effect (water can cool faster when initially heated up) showcases the critical role of initial conditions in relaxation processes. How to realize and utilize this effect for speeding up relaxation is an important but challenging task in purely quantum system till now. Here, we experimentally study the strong Mpemba effect in a single trapped ion system in which an exponentially accelerated relaxation in time is observed by preparing an optimal quantum initial state with no excitation of the slowest decaying mode.

View Article and Find Full Text PDF

Dynamic control of 2D non-Hermitian photonic corner skin modes in synthetic dimensions.

Nat Commun

December 2024

Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA.

Non-Hermitian models describe the physics of ubiquitous open systems with gain and loss. One intriguing aspect of non-Hermitian models is their inherent topology that can produce intriguing boundary phenomena like resilient higher-order topological insulators (HOTIs) and non-Hermitian skin effects (NHSE). Recently, time-multiplexed lattices in synthetic dimensions have emerged as a versatile platform for the investigation of these effects free of geometric restrictions.

View Article and Find Full Text PDF

Exceptional points (EPs) have been the subject of wide concern because of their unique physical properties and have produced many related applications. However, up to now, most non-Hermitian metasurfaces related to EPs focus on realizing a single function. It remains a challenge to integrate multiple functions into a single non-Hermitian metasurface while making it dynamically adjustable.

View Article and Find Full Text PDF

In contrast with extended Bloch waves, a single particle can become spatially localized due to the so-called skin effect originating from non-Hermitian pumping. Here we show that in kinetically constrained many-body systems, the skin effect can instead manifest as dynamical amplification within the Fock space, beyond the intuitively expected and previously studied particle localization and clustering. We exemplify this non-Hermitian Fock skin effect in an asymmetric version of the PXP model and show that it gives rise to ergodicity-breaking eigenstates-the non-Hermitian analogs of quantum many-body scars.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!