The , a woody oil plant, has garnered attention for its oil-rich fruit, which exhibits potential for both oil production and ecological restoration endeavors, thereby presenting substantial developmental value. However, the comprehension of the distinctive oil biosynthesis and deposition strategies within the fruit's various compartments, coupled with the tissue-specific biosynthetic pathways yielding optimal fatty acid profiles, remains in its infancy. This investigation was designed to delineate the tissue specificity of oil biosynthetic disparities and to elucidate the molecular underpinnings within the fruit mesocarp and seeds of , employing lipidomic and transcriptomic analyses. The results revealed that oil biosynthesis within the fruit mesocarp commences approximately 40 days prior to that within the seeds, with a concomitant higher lipid content observed in the mesocarp, reaching 43% as opposed to 30% in the seeds. The fruit mesocarp was found to be enriched with palmitic acid (C16:0) and exhibited a harmonious ratio of saturated, monounsaturated, to polyunsaturated fatty acids (SFA: MUFA: PUFA=1:1:1), in stark contrast to the seed oil, which is predominantly composed of unsaturated fatty acids, accounting for 90% of its total FA content. Microstructural assessments have unveiled divergent oil deposition modalities; the fruit mesocarp oils are predominantly sequestered within oil cells (OC) and a spectrum of lipid droplets (LD), whereas the seeds predominantly harbor uniformly-sized LD. The expression patterns of pivotal genes implicated in oil biosynthesis were observed to be markedly contingent upon the tissue type and developmental stage. Notably, the light-responsive fatty acid synthase (FAS) gene demonstrated preferential transcription within the fruit mesocarp. In contrast, genes pivotal for carbon chain elongation, such as 3-ketoacyl-ACP synthase II (KASII) and fatty acyl-ACP thioesterase A (FATA), and desaturation, typified by Stearoyl-ACP desaturase (SAD) and Fatty Acid Desaturase (FAD), were noted to be more robustly transcribed within the seeds. Furthermore, isoenzyme gene families integral to the assembly of triacylglycerol (TAG), including long-chain acyl-CoA synthetases (LACSs), glycerol-3-phosphate acyltransferases (GPATs), and lysophosphatidic acid acyltransferases (LPATs), exhibited pronounced tissue specificity. This research endeavors to clarify the molecular regulatory mechanisms that oversee oil biosynthesis within both seed and non-seed tissues of oilseed-bearing plants with entire fruits. Collectively, these findings lay the groundwork and offer technical scaffolding for future targeted cultivation of woody oil plants, with the ultimate aim of augmenting fruit oil yield and refining FA compositions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479902 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1441602 | DOI Listing |
Plants (Basel)
December 2024
Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.
(β-ketoacyl-acyl carrier protein (ACP) synthases II), (fatty acid thioesterases), (stearoyl-ACP desaturase), and (fatty acid desaturases) are the vital gene families involved in fatty acid (FA) synthesis in L. However, information on the number and location of these genes and which ones are key to the formation of FAs in fruit seeds and pulp was not complete. Our study aimed to solve this issue using the available genomic sequences and transcriptome data that we obtained.
View Article and Find Full Text PDFToxics
November 2024
The Julius L. Chambers Biomedical/Biotechnology Research Institute (JLC-BBRI), North Carolina Central University (NCCU), Durham, NC 27707, USA.
Crude oil naphtha fraction C9 alkylbenzenes consist of trimethylbenzenes, ethyltoluenes, cumene, and n-propylbenzene. The major fraction of C9 alkylbenzenes is ethyltoluenes (ETs) consisting of three isomers: 2-ethyltoluene (2-ET), 3-ethyltoluene (3-ET), and 4-ethyltoluene (4-ET). Occupational and environmental exposure to ETs can occur via inhalation and ingestion and cause several health problems.
View Article and Find Full Text PDFNutrients
December 2024
Exerkine Corporation, McMaster University Medical Center, Hamilton, ON L8N 3Z5, Canada.
Background: Anabolic resistance accelerates muscle loss in aging and obesity, thus predisposing to sarcopenic obesity.
Methods: In this retrospective analysis of a randomized clinical trial, we examined baseline predictors of the adaptive response to three months of home-based resistance exercise, daily physical activity, and protein-based, multi-ingredient supplementation (MIS) in a cohort of free-living, older males ( = 32).
Results: Multiple linear regression analyses revealed that obesity and a Global Risk Index for metabolic syndrome (MetS) were the strongest predictors of Δ% gains in lean mass (TLM and ASM), LM/body fat ratios (TLM/%BF, ASM/FM, and ASM/%BF), and allometric LM (ASMI, TLM/BW, TLM/BMI, ASM/BW), with moderately strong, negative correlations to the adaptive response to polytherapy r = -0.
Nutrients
December 2024
Endocrinologia e Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00136 Rome, Italy.
Omega-3 fatty acids reduce triglycerides and have several positive effects on different organs and systems. They are also found in the plasma membrane in variable amounts in relation to genetics and diet. However, it is still unclear whether omega-3 supplementation can reduce the occurrence of major cardiovascular events (MACEs).
View Article and Find Full Text PDFMicroorganisms
December 2024
VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.
Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!