Development of destabilized mCherry fluorescent proteins for applications in the model yeast .

Biotechnol Notes

NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore, Singapore.

Published: December 2022

AI Article Synopsis

  • Fluorescent proteins are essential for tracking gene expression and protein localization in cells, especially in model organisms like yeast.
  • To improve the use of fluorescent proteins, researchers created destabilized versions of green and cyan proteins, but faced challenges with their overlapping light spectra.
  • The study reports the development of four new destabilized red fluorescent proteins by linking them to specific degrons, offering varied fluorescence lifetimes and intensities, which enhances the toolkit for studying cellular activities.

Article Abstract

Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast , destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in . To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in . . Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446383PMC
http://dx.doi.org/10.1016/j.biotno.2022.12.001DOI Listing

Publication Analysis

Top Keywords

fluorescent proteins
24
model yeast
12
red fluorescent
12
fluorescent protein
12
fluorescent
9
mcherry fluorescent
8
gene expression
8
transient cellular
8
green cyan
8
cyan fluorescent
8

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

The Formation and Features of Massive Vacuole Induced by Nutrient Deficiency in Human Embryonic Kidney Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Cardiovascular Medicine, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, China.

Background: Cellular vacuolization is a commonly observed phenomenon under physiological and pathological conditions. However, the mechanisms underlying vacuole formation remain largely unresolved.

Methods: LysoTracker Deep Red probes and Enhanced Green Fluorescent Protein-tagged light chain 3B (LC3B) plasmids were employed to differentiate the types of massive vacuoles.

View Article and Find Full Text PDF

De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.

View Article and Find Full Text PDF

HDAC1 and HDAC2 Are Involved in Influenza A Virus-Induced Nuclear Translocation of Ectopically Expressed STAT3-GFP.

Viruses

December 2024

Department of Microbiology and Immunology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand.

Influenza A virus (IAV) remains a pandemic threat. Particularly, the evolution and increased interspecies and intercontinental transmission of avian IAV H5N1 subtype highlight the importance of continuously studying the IAV and identifying the determinants of its pathogenesis. Host innate antiviral response is the first line of defense against IAV infection, and the transcription factor, the signal transducer and activator of transcription 3 (STAT3), has emerged as a critical component of this response.

View Article and Find Full Text PDF

Canids act as a crucial intermediary in the transmission of rabies and , serving as co-infection hosts and pathogen carriers for both rabies and hydatid disease (HD) transmitted from animals to humans. Therefore, an effective and efficient bivalent oral vaccine for preventing HD and rabies is urgently required to reduce economic losses in husbandry resulting from rabies and HD. In this study, a full-length plasmid (pcDNA4-NPM+G+EgM123+eGFP+L) carrying the gene and fluorescence reporter genes of eGFP and four auxiliary transfection plasmids of rabies virus SRV (pcDNA4-N, pcDNA4-P, pcDNA4-G, pcDNA-L) were established by reverse genetics approaches and co-transfected to BSR cells by electrotransfection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!