Synthetic biology landscape in the UK.

Biotechnol Notes

Department Of Mechanical Engineering, Exhibition Road, Kensington, London, SW7 2BX, United Kingdom.

Published: August 2022

The UK is home to a vibrant and diverse synthetic biology community. Many of its successes in research innovation and technological commercialisation can be attributed to a strong base of dedicated academics, investors, industrial leadership, and policymakers. Here, we give an overview of the organisations making up the network that have been key to these successes and the roles that they play within the different levels of the community. We start with a brief history of synthetic biology in the UK and continue by describing the progression of the societies and institutions that were set up, with particular focus on the UK's active student and entrepreneurship scene, as well as centres of research. We then contextualise the UK's growing bioeconomy, detailing government trajectories of planned innovation and how these coincide with research translation. The path to commercialisation for researchers is put into comparison to that of the US, the world leader in synthetic biology and its translation, highlighting aspects that differentiate the UK globally. Finally, we conclude with a bright outlook on the current velocity of progress and the state of the community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446367PMC
http://dx.doi.org/10.1016/j.biotno.2022.07.002DOI Listing

Publication Analysis

Top Keywords

synthetic biology
16
synthetic
4
biology landscape
4
landscape vibrant
4
vibrant diverse
4
diverse synthetic
4
biology community
4
community successes
4
successes innovation
4
innovation technological
4

Similar Publications

Chalcogenide exchange reactions are an important class of bimolecular nucleophilic substitution reactions (SN2) involving sulfur and selenium species as nucleophile, central atom, and/or leaving group, which are fundamental throughout redox biology and metabolism. While thiol-disulfide exchange reactions have been deeply investigated, those involving selenium are less understood, especially with regards to the polarised selenenyl sulfides RSe-SR' even though the directed reactivity of selenenyl sulfides is biologically crucial for selenoenzymes such as thioredoxin reductase (TrxR) and glutathione peroxidase (GPx). Synthetic methods to create asymmetric selenenyl sulfides with high regiochemical purity only emerged over the last five years; this functional group has already demonstrated powerful applications to cell biology, through probes for molecular imaging (e.

View Article and Find Full Text PDF

EXO: A Dual-Mechanism Stimulator of Interferon Genes Activator for Cancer Immunotherapy.

ACS Nano

January 2025

Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China.

As natural agonists of the stimulator of interferon genes (STING) protein, cyclic dinucleotides (CDNs) can activate the STING pathway, leading to the expression of type I interferons and various cytokines. Efficient activation of the STING pathway in antigen-presenting cells (APCs) and tumor cells is crucial for antitumor immune response. Tumor-derived exosomes can be effectively internalized by APCs and tumor cells and have excellent potential to deliver CDNs to the cytoplasm of APCs and tumor cells.

View Article and Find Full Text PDF

Soil bacteria are prolific producers of a myriad of biologically active secondary metabolites. These natural products play key roles in modern society, finding use as anti-cancer agents, as food additives, and as alternatives to chemical pesticides. As for their original role in interbacterial communication, secondary metabolites have been extensively studied under in vitro conditions, revealing many roles including antagonism, effects on motility, niche colonization, signaling, and cellular differentiation.

View Article and Find Full Text PDF

Current Approaches for Genetic Manipulation of spp.-Key Bacteria for Biotechnology and Environment.

BioTech (Basel)

January 2025

Valent BioSciences, Biorational Research Center, 1910 Innovation Way, Suite 100, Libertyville, IL 60048, USA.

Organisms from the genus feature actinobacteria with complex developmental cycles and a great ability to produce a variety of natural products. These soil bacteria produce more than 2/3 of antibiotics used in medicine, and a large variety of bioactive compounds for industrial, medical and agricultural use. Although spp.

View Article and Find Full Text PDF

Peptide Inhibitor Assay for Allocating Functionally Important Accessible Sites Throughout a Protein Chain: Restriction Endonuclease EcoRI as a Model Protein System.

BioTech (Basel)

December 2024

The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan.

Functionally important amino acid sequences in proteins are often located at multiple sites. Three-dimensional structural analysis and site-directed mutagenesis may be performed to allocate functional sites for understanding structure‒function relationships and for developing novel inhibitory drugs. However, such methods are too demanding to comprehensively cover potential functional sites throughout a protein chain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!