A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Deep learning architecture for scatter estimation in cone-beam computed tomography head imaging with varying field-of-measurement settings. | LitMetric

Deep learning architecture for scatter estimation in cone-beam computed tomography head imaging with varying field-of-measurement settings.

J Med Imaging (Bellingham)

Aalto University, Department of Electrical Engineering and Automation (EEA), Espoo, Finland.

Published: September 2024

Purpose: X-ray scatter causes considerable degradation in the cone-beam computed tomography (CBCT) image quality. To estimate the scatter, deep learning-based methods have been demonstrated to be effective. Modern CBCT systems can scan a wide range of field-of-measurement (FOM) sizes. Variations in the size of FOM can cause a major shift in the scatter-to-primary ratio in CBCT. However, the scatter estimation performance of deep learning networks has not been extensively evaluated under varying FOMs. Therefore, we train the state-of-the-art scatter estimation neural networks for varying FOMs and develop a method to utilize FOM size information to improve performance.

Approach: We used FOM size information as additional features by converting it into two channels and then concatenating it to the encoder of the networks. We compared our approach for a U-Net, Spline-Net, and DSE-Net, by training them with and without the FOM information. We utilized a Monte Carlo-simulated dataset to train the networks on 18 FOM sizes and test on 30 unseen FOM sizes. In addition, we evaluated the models on the water phantoms and real clinical CBCT scans.

Results: The simulation study demonstrates that our method reduced average mean-absolute-percentage-error for U-Net by 38%, Spline-Net by 40%, and DSE-net by 33% for the scatter estimation in the 2D projection domain. Furthermore, the root-mean-square error on the 3D reconstructed volumes was improved for U-Net by 43%, Spline-Net by 30%, and DSE-Net by 23%. Furthermore, our method improved contrast and image quality on real datasets such as water phantom and clinical data.

Conclusion: Providing additional information about FOM size improves the robustness of the neural networks for scatter estimation. Our approach is not limited to utilizing only FOM size information; more variables such as tube voltage, scanning geometry, and patient size can be added to improve the robustness of a single network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11477364PMC
http://dx.doi.org/10.1117/1.JMI.11.5.053501DOI Listing

Publication Analysis

Top Keywords

scatter estimation
20
fom size
16
fom sizes
12
fom
9
deep learning
8
cone-beam computed
8
computed tomography
8
image quality
8
varying foms
8
neural networks
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!