Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging. Although cell jamming and unjamming follow physics principles described by the jamming diagram, they are fundamentally biological processes. In this review, we explore how cellular processes and interactions regulate jamming and unjamming transitions. We begin with an overview of how these transitions control tissue remodeling in epithelial model systems and describe recent findings of the physical principles governing tissue solidification and fluidization. We then explore the mechanistic pathways that modulate the jamming phase diagram axes, focusing on the regulation of cell fluctuations and geometric compatibility. Drawing upon seminal works in cell biology, we discuss the roles of cytoskeleton and cell-cell adhesion in controlling cell motility and geometry. This comprehensive view illustrates the molecular control of cell jamming and unjamming, crucial for tissue remodeling in various biological contexts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11479637 | PMC |
http://dx.doi.org/10.1063/5.0220088 | DOI Listing |
Nat Commun
December 2024
Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin-si, Republic of Korea.
Self-assembled configurations are versatile for applications in which liquid-mediated phenomena are employed to ensure that static or mild physical interactions between assembling blocks take advantage of local energy minima. For granular materials, however, a particle's momentum in air leads to random collisions and the formation of disordered phases, eventually producing jammed configurations when densely packed. Therefore, unlike fluidic self-assembly, the self-assembly of dry particles typically lacks programmability based on density and ordering symmetry and has thus been limited in applications.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
December 2024
Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA.
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype.
View Article and Find Full Text PDFBiophys Rev (Melville)
December 2024
Bioengineering Department, UCLA, Los Angeles, California 90095, USA.
Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging.
View Article and Find Full Text PDFArXiv
September 2024
Department of Physics, Northeastern University, Boston, MA 02115, USA and Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02215, USA.
During development and under normal physiological conditions, biological tissues are continuously subjected to substantial mechanical stresses. In response to large deformations cells in a tissue must undergo multicellular rearrangements in order to maintain integrity and robustness. However, how these events are connected in time and space remains unknown.
View Article and Find Full Text PDFBioinspir Biomim
August 2024
Wuhan Second Ship Design & Research Institute, Wuhan 430205, People's Republic of China.
Soft actuators made of soft materials cannot generate precisely efficient output forces compared to rigid actuators. It is a promising strategy to equip soft actuators with variable stiffness modules of layer jamming mechanism, which could increase their stiffness as needed. Inspired by the gecko's the array of setae, bionic adhesive flaps with inclined micropillars are applied in layer jamming mechanism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!