Phages, viruses of bacteria, play a pivotal role in Earth's biosphere and hold great promise as therapeutic and diagnostic tools in combating infectious diseases. Attachment of phages to bacterial cells is a crucial initial step of the interaction. The classic assay to quantify the dynamics of phage attachment involves co-culturing and enumeration of bacteria and phages, which is laborious, lengthy, hence low-throughput, and only provides ensemble estimates of model-based adsorption rate constants. Here, we utilized fluorescence microscopy and particle tracking to obtain trajectories of individual virus particles interacting with cells. The trajectory durations quantified the heterogeneity in dwell time, the time that each phage spends interacting with a bacterium. The average dwell time strongly correlated with the classically-measured adsorption rate constant. We successfully applied this technique to quantify host-attachment dynamics of several phages including those targeting key bacterial pathogens. This approach should benefit the field of phage biology by providing highly quantitative, model-free readouts at single-virus resolution, helping to uncover single-virus phenomena missed by traditional measurements. Owing to significant reduction in manual effort, our method should enable rapid, high-throughput screening of a phage library against a target bacterial strain for applications such as therapy or diagnosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482966PMC
http://dx.doi.org/10.1101/2024.10.09.617072DOI Listing

Publication Analysis

Top Keywords

bacterial cells
8
adsorption rate
8
dwell time
8
microscopic phage
4
phage adsorption
4
adsorption assay
4
assay high-throughput
4
high-throughput quantification
4
quantification virus
4
virus particle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!