Tubulin is the major structural constituent of the microtubule cytoskeleton. Yeast Schizosaccharomyces pombe contain two α- tubulins genes, nda2 and atb2, that are highly functionally distinct: nda2 deletion is lethal, while lack of atb2 does not interfere with cell viability. The functional determinants underlying this distinction are unknown. Here we used CRISPR-Cas9 gene editing to generate a yeast strain expressing Atb2 amino acid sequence utilizing Nda2 codon usage in the native Nda2 locus. Such Nda2-coded Atb2 (NCA) yeast, unlike Nda2 knockout, were viable and displayed no visible abnormalities in cell morphology or vegetative life cycle. However, these NCA yeast showed strong impairments in sporulation and meiosis, including major meiotic delays and high rates of abnormal chromosome segregation. Our data indicate that the amino acid sequence of Nda2 is uniquely required for normal meiosis, and identify a novel determinant that underlies functional distinction between closely related tubulin isoforms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482916PMC
http://dx.doi.org/10.1101/2024.10.11.617919DOI Listing

Publication Analysis

Top Keywords

uniquely required
8
amino acid
8
acid sequence
8
nca yeast
8
nda2
6
amino acid-level
4
acid-level differences
4
differences alpha
4
alpha tubulin
4
tubulin sequences
4

Similar Publications

l-theanine: From tea leaf to trending supplement - does the science match the hype for brain health and relaxation?

Nutr Res

January 2025

Department of Molecular Medicine, University of Padova, Padova, Italy; IMDEA-Food, Madrid, Spain. Electronic address:

l-Theanine is a unique non-protein amino acid found abundantly in tea leaves. Interest in its potential use as a dietary supplement has surged recently, especially claims related to promoting relaxation and cognitive enhancement. This review surveys the chemistry, metabolism, and purported biological activities of l-theanine.

View Article and Find Full Text PDF

Metalgel Fiber with Excellent Electrical and Mechanical Properties.

ACS Appl Mater Interfaces

January 2025

National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China.

With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure.

View Article and Find Full Text PDF

Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.

View Article and Find Full Text PDF

Background: A proper placentation is required for establishment and continuity of pregnancy. In sheep, placentomes are unique structures that enable nutrition and gas exchange between the mother and the foetus. Although placentomes are dynamic formations, there is limited knowledge of changes in placentomes during pregnancy.

View Article and Find Full Text PDF

Despite significant advancements in the structural flexibility and functional diversity of fluorescent molecular sensors, the chromophores often require complex synthetic processes and are typically designed to perform only a specific function. Herein, we have demonstrated the unique features of fluorophores based on a fused coumarin-indole scaffold, which are synthetically available via a one-step reaction. Four fluorophores (ICH, ICEst, ICOMe, and ICNMe2) with varying substituents were synthesized and characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!