Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breast cancer, the most common cancer among women worldwide, continues to pose significant public health challenges. Among the subtypes of breast cancer, triple-negative breast cancer (TNBC) is particularly aggressive and difficult to treat due to the absence of receptors for estrogen, progesterone, or human epidermal growth factor receptor 2, rendering TNBC refractory to conventional targeted therapies. Emerging research underscores the exacerbating role of metabolic disorders, such as type 2 diabetes and obesity, on TNBC aggressiveness. Here, we investigate the critical cellular and molecular factors underlying this link. We explore the pivotal role of circulating plasma exosomes in modulating the tumor microenvironment and enhancing TNBC aggressiveness. We find that plasma exosomes from diet-induced obesity mice induce epithelial- mesenchymal transition features in TNBC cells, leading to increased migration and enhanced metastasis . We build on our previous reports demonstrating that plasma exosomes from obese, diabetic patients, and exosomes from insulin-resistant 3T3-L1 adipocytes, upregulate key transcriptional signatures of epithelial- mesenchymal transition in breast cancer. Bioinformatic analysis reveals that TNBC cells exhibit higher expression and activation of proteins related to the Rho-GTPase cascade, particularly the small Ras-related protein Rac1. Our approach suggests novel therapeutic targets and exosomal biomarkers, ultimately to improve prognosis for TNBC patients with co-morbid metabolic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482917 | PMC |
http://dx.doi.org/10.1101/2024.10.10.617639 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!