AI Article Synopsis

  • * Researchers developed a new method called SAMPL-seq, which allows for in-depth analysis of microbial composition at a very small scale, enabling them to observe how certain microbial groups cluster together in the gut.
  • * Their findings revealed that specific bacteria consistently co-occur over time in distinct spatial groups and can change their locations in response to dietary changes, highlighting the dynamic nature of the gut microbiome.

Article Abstract

The local arrangement of microbes can profoundly impact community assembly, function, and stability. To date, little is known about the spatial organization of the human gut microbiome. Here, we describe a high-throughput and streamlined method, dubbed SAMPL-seq, that samples microbial composition of micron-scale sub-communities with split-and-pool barcoding to capture spatial colocalization in a complex consortium. SAMPL-seq analysis of the gut microbiome of healthy humans identified bacterial taxa pairs that consistently co-occurred both over time and across multiple individuals. These colocalized microbes organize into spatially distinct groups or "spatial hubs" dominated by , , and families. From a dietary perturbation using inulin, we observed reversible spatial rearrangement of the gut microbiome, where specific taxa form new local partnerships. Spatial metagenomics using SAMPL-seq can unlock new insights to improve the study of microbial communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482894PMC
http://dx.doi.org/10.1101/2024.10.08.617108DOI Listing

Publication Analysis

Top Keywords

gut microbiome
16
human gut
8
spatial
5
sampl-seq
4
sampl-seq reveals
4
reveals micron-scale
4
micron-scale spatial
4
spatial hubs
4
hubs human
4
gut
4

Similar Publications

Purpose Of Review: Recent research underscores the significant influence of the skin and gut microbiota on melanoma and nonmelanoma skin cancer (NMSC) development and treatment outcomes. This review aims to synthesize current findings on how microbiota modulates immune responses, particularly enhancing the efficacy of immunotherapies such as immune checkpoint inhibitors (ICIs).

Recent Findings: The microbiota's impact on skin cancer is multifaceted, involving immune modulation, inflammation, and metabolic interactions.

View Article and Find Full Text PDF

To clarify the effects of kefir in critical periods of development in adult diseases, we study the effects of kefir intake during early life on gut microbiota and prevention of colorectal carcinogenesis in adulthood. Lactating Wistar rats were divided into three groups: control (C), kefir lactation (KL), and kefir puberty (KP) groups. The C and KP groups received 1 mL of water/day; KL dams received kefir milk daily (10 CFU/mL) during lactation.

View Article and Find Full Text PDF

coordinates the IL-10 inducing activity of .

Microbiol Spectr

January 2025

Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.

Unlabelled: The intestine is home to a complex immune system that is engaged in mutualistic interactions with the microbiome that maintain intestinal homeostasis. A variety of immune-derived anti-inflammatory mediators have been uncovered and shown to be critical for maintaining these beneficial immune-microbiome relationships. Notably, the gut microbiome actively invokes the induction of anti-inflammatory pathways that limit the development of microbiome-targeted inflammatory immune responses.

View Article and Find Full Text PDF

Environmental and population influences on mummichog () gut microbiomes.

Microbiol Spectr

January 2025

Marine Chemistry & Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.

Unlabelled: The mummichog, , an abundant estuarine fish broadly distributed along the eastern coast of North America, has repeatedly evolved tolerance to otherwise lethal levels of aromatic hydrocarbon exposure. This tolerance is linked to reduced activation of the aryl hydrocarbon receptor (AHR) signaling pathway. In other animals, the AHR has been shown to influence the gastrointestinal-associated microbial community, particularly when activated by the model toxic pollutant 3,3',4,4',5-pentachlorobiphenyl (PCB-126) and other dioxin-like compounds.

View Article and Find Full Text PDF

Background: Colon cancer is a leading cause of mortality in Appalachian Kentucky. Studies suggest that the microbiome may influence cancer outcomes. We investigate differential gene expression, the tumor microbiome, and the association between the two as potential drivers of disparities in colon cancer outcomes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!