Despite the power of path sampling strategies in enabling simulations of rare events, such strategies have not reached their full potential. A common challenge that remains is the identification of a progress coordinate that captures the slow relevant motions of a rare event. Here we have developed a weighted ensemble (WE) path sampling strategy that exploits reinforcement learning to automatically identify an effective progress coordinate among a set of potential coordinates during a simulation. We apply our WE strategy with reinforcement learning to three benchmark systems: (i) an egg carton-shaped toy potential, (ii) an S-shaped toy potential, and (iii) a dimer of the HIV-1 capsid protein (C-terminal domain). To enable rapid testing of the latter system at the atomic level, we employed discrete-state synthetic molecular dynamics trajectories using a generative, fine-grained Markov state model that was based on extensive conventional simulations. Our results demonstrate that using concepts from reinforcement learning with a weighted ensemble of trajectories automatically identifies relevant progress co-ordinates among multiple candidates at a given time during a simulation. Due to the rigorous weighting of trajectories, the simulations maintain rigorous kinetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482931PMC
http://dx.doi.org/10.1101/2024.10.09.617475DOI Listing

Publication Analysis

Top Keywords

weighted ensemble
12
reinforcement learning
12
path sampling
8
progress coordinate
8
toy potential
8
rare-event sampling
4
reinforcement
4
sampling reinforcement
4
reinforcement learning-based
4
learning-based weighted
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!