Opioid receptors reveal a discrete cellular mechanism of endosomal G protein activation.

bioRxiv

Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA.

Published: October 2024

Many GPCRs initiate a second phase of G protein-mediated signaling from endosomes, which inherently requires an increase in G protein activity on the endosome surface. G-coupled GPCRs are thought to achieve this by internalizing and allosterically activating cognate G proteins again on the endosome membrane. Here we demonstrate that the μ-opioid receptor (MOR), a G-coupled GPCR, increases endosomal G protein activity in a different way. Leveraging conformational biosensors, we resolve the subcellular activation dynamics of endogenously expressed MOR and G-subclass G proteins. We show that MOR activation triggers a transient increase of active-state G on the plasma membrane that is followed by a prolonged increase on endosomes. Contrary to the G-coupled GPCR paradigm, however, we show that the MOR-induced increase of active-state G on endosomes requires neither internalization of MOR nor activation of MOR in the endosome membrane. We propose a distinct and additional cellular mechanism for GPCR-triggered elevation of G protein activity on endosomes that is mediated by regulated trafficking of the activated G protein rather than its activating GPCR.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482822PMC
http://dx.doi.org/10.1101/2024.10.07.617095DOI Listing

Publication Analysis

Top Keywords

protein activity
12
cellular mechanism
8
endosomal protein
8
endosome membrane
8
g-coupled gpcr
8
mor activation
8
increase active-state
8
protein
5
mor
5
opioid receptors
4

Similar Publications

Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.

View Article and Find Full Text PDF

Introduction: Prostate cancer (PCa) is the commonest urologic cancer worldwide and the leading cause of male cancer deaths in Nigeria. In Nigeria, orchidectomy remains the primary androgen deprivation therapy. Dihydrotestosterone (DHT) is the active prostatic androgen, but its relationship with PCa severity has not been extensively studied in Africa.

View Article and Find Full Text PDF

GITRL enhances cytotoxicity and persistence of CAR-T cells in cancer therapy.

Mol Ther

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai, China, 200241. Electronic address:

CAR T-cell therapy has achieved remarkable clinical success in treating hematological malignancies. However, its clinical efficacy in solid tumors is less satisfactory, partially due to poor in vivo expansion and limited persistence of CAR-T cells. Here, we demonstrated that the overexpression of glucocorticoid-induced tumor necrosis factor receptor-related protein ligand (GITRL) enhances the anti-tumor activity of CAR-T cells.

View Article and Find Full Text PDF

BACKGROUND Periodontal disease and rheumatoid arthritis (RA) are closely related, and periodontal therapy can potentially improve RA activity. However, it is not clear in which RA patient populations are more effective periodontal therapy for RA treatment. This study aimed to evaluate the effects of treatment for periodontal disease in 30 patients with rheumatoid arthritis and the titers of antibodies to Porphyromonas gingivalis (P.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC), particularly high-grade serous ovarian carcinoma (HGSOC), is the leading cause of mortality from gynecological malignancies worldwide. Despite the initial effectiveness of treatment, acquired resistance to poly(ADP-ribose) polymerase inhibitors (PARPis) represents a major challenge for the clinical management of HGSOC, highlighting the necessity for the development of novel therapeutic strategies. This study investigated the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a pivotal regulator of glycolysis, in PARPi resistance and explored its potential as a therapeutic target to overcome PARPi resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!