AI Article Synopsis

  • The cerebellum's vestibular processing regions help integrate balance and spatial orientation signals from various sensory inputs and motor functions.
  • Unipolar brush cells (UBCs), found in high concentrations in these regions, play a crucial role by relaying vestibular signals to granule cells, potentially impacting balance-related movements.
  • Disrupting UBC activity led to significant balance and locomotion issues in older mice, highlighting their importance in maintaining balance, especially as age-related impairments become evident.

Article Abstract

The vestibular processing regions of the cerebellum integrate vestibular information with other sensory modalities and motor signals to regulate balance, gaze stability, and spatial orientation. A class of excitatory glutamatergic interneurons known as unipolar brush cells (UBCs) are highly concentrated within the granule cell layer of these regions. UBCs receive vestibular signals directly from primary vestibular afferents and indirectly from mossy fibers. Each UBC excites numerous granule cells and could contribute to computations necessary for balance-related motor function. Prior research has implicated UBCs in motor function, but their influence on balance performance remains unclear, especially in aged mice that have age-related impairment. Here we tested whether UBCs contribute to motor coordination and balance by disrupting their activity with chemogenetics in aged and young mice. Age-related balance deficits were apparent in mice > 6 months old. Disrupting the activity of a subpopulation of UBCs caused aged mice to fall off a balance beam more frequently and altered swimming behaviors that are sensitive to vestibular dysfunction. These effects were not seen in young (7-week-old) mice. Thus, disrupting the activity of UBCs impairs mice with age-related balance issues and suggest that UBCs are essential for balance and vestibular function in aged mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482929PMC
http://dx.doi.org/10.1101/2024.10.10.617602DOI Listing

Publication Analysis

Top Keywords

aged mice
16
mice age-related
12
disrupting activity
12
balance
8
balance performance
8
mice
8
unipolar brush
8
brush cells
8
motor function
8
age-related balance
8

Similar Publications

Downregulation of FcRn promotes ferroptosis in herpes simplex virus-1-induced lung injury.

Cell Mol Life Sci

January 2025

School of Basic Medical Sciences, Xinxiang Medical University, #601 Jinsui Road, Xinxiang, 453003, Henan, China.

Herpes simplex virus type I (HSV-1) infection is associated with lung injury; however, no specific treatment is currently available. In this study, we found a significant negative correlation between FcRn levels and the severity of HSV-1-induced lung injury. HSV-1 infection increases the methylation of the FcRn promoter, which suppresses FcRn expression by upregulating DNMT3b expression.

View Article and Find Full Text PDF

The effect of long-term administration of green tea catechins on aging-related cardiac diastolic dysfunction and decline of troponin I.

Genes Dis

March 2025

Department of Cardiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing 400014, China.

Aging is an independent risk factor for cardiovascular diseases. Cardiac diastolic dysfunction (CDD), ultimately leading to heart failure with preserved ejection fraction (HFpEF), is prevalent among older individuals. Although therapeutics have made great progress, preventive strategies remain unmet medical needs.

View Article and Find Full Text PDF

Focal Septic Arthritis Elicits Age and TLR2-Dependent Periarticular Bone Loss.

J Inflamm Res

December 2024

Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.

Introduction: Septic arthritis, primarily caused by (), is a severe joint infection that leads to joint and bone damage. lipoproteins (LPPs) bind to Toll-like Receptor 2 (TLR2), inducing arthritis and localized bone loss. Aging affects TLR2 immune response to pathogens.

View Article and Find Full Text PDF

Accumulation of damaged biomolecules in body tissues is the primary cause of aging and age-related chronic diseases. Since this damage often occurs spontaneously, it has traditionally been regarded as untreatable, with typical therapeutic strategies targeting genes or enzymes being ineffective in this domain. In this report, we demonstrate that an antibody targeting the isoDGR damage motif in lung tissue can guide immune clearance of harmful damaged proteins in vivo, effectively reducing age-linked lung inflammation.

View Article and Find Full Text PDF

Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!