The intensity and duration of biological signals encode information that allows a few pathways to regulate a wide array of cellular behaviors. Despite the central importance of signaling in biomedical research, our ability to quantify it in individual cells over time remains limited. Here, we introduce INSCRIBE, an approach for reconstructing signaling history in single cells using endpoint fluorescence images. By regulating a CRISPR base editor, INSCRIBE generates mutations in genomic target sequences, at a rate proportional to signaling activity. The number of edits is then recovered through a novel ratiometric readout strategy, from images of two fluorescence channels. We engineered human cell lines for recording WNT and BMP pathway activity, and demonstrated that INSCRIBE faithfully recovers both the intensity and duration of signaling. Further, we used INSCRIBE to study the variability of cellular response to WNT and BMP stimulation, and test whether the magnitude of response is a stable, heritable trait. We found a persistent memory in the BMP pathway. Progeny of cells with higher BMP response levels are likely to respond more strongly to a second BMP stimulation, up to 3 weeks later. Together, our results establish a scalable platform for genetic recording and readout of signaling history in single cells, advancing quantitative analysis of cell-cell communication during development and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482953 | PMC |
http://dx.doi.org/10.1101/2024.10.11.617908 | DOI Listing |
Osteoporos Int
January 2025
Hospital del Mar Research Institute, Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Barcelona, Spain.
A 29-year-old Spanish Caucasian man, without relevant family history, was attended in our unit due to an undiagnosed skeletal dysplasia associated with low bone mass and several fragility fractures throughout his childhood and adolescence. DXA exams throughout his life showed very low BMD values; currently, his spinal and femoral neck T-scores were - 4.3 and - 3.
View Article and Find Full Text PDFProg Rehabil Med
January 2025
Division of Rehabilitation Medicine, Gunma University Hospital, Maebashi, Japan.
Background: Immune-mediated necrotizing myopathy (IMNM) is a type of autoimmune myositis. Anti-signal recognition particle (SRP) antibodies are highly specific to this disease.
Case: A 76-year-old woman presented with a 4-month history of acute progressive limb muscle weakness and dysphagia.
Cancer is a condition in which cells in the body grow uncontrollably, often forming tumours and potentially spreading to various areas of the body. Cancer is a hazardous medical case in medical history analysis. Every year, many people die of cancer at an early stage.
View Article and Find Full Text PDFCell Death Dis
January 2025
Department of Clinical and Laboratory Sciences and Medical Biotechnology, National Taiwan University College of Medicine, Taipei, Taiwan.
The spatial role of M1 and M2 tumor-associated macrophages (M1/M2 TAMs) in precision medicine remains unclear. EGFR and TP53 are among the most frequently mutated genes in lung adenocarcinoma. We characterized the mutation status and density of M1/M2 TAMs within tumor islets and stroma in 117 lung adenocarcinomas using next-generation sequencing and immunohistochemistry, respectively.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China. Electronic address:
Ethnopharmacological Relevance: Emplastrum has a long history of use in the clinical practice of traditional Chinese medicine (TCM), valued for its convenient external application and pronounced therapeutic effects. Traditionally, the emplastrum was composed of numerous herbal medicines. The elucidation of their mechanisms of action are of great importance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!