Regulated cell death (RCD) is crucial for the elimination of abnormal cells. In recent years, strategies aimed at inducing RCD, particularly apoptosis, have become increasingly important in cancer therapy. However, the ability of tumor cells to evade apoptosis has led to treatment resistance and relapse, prompting extensive research into alternative death processes in cancer cells. A recent study identified a novel form of RCD known as disulfidptosis, which is linked to disulfide stress. Cancer cells import cystine from the extracellular environment via solute carrier family 7 member 11 (SLC7A11) and convert it to cysteine using nicotinamide adenine dinucleotide phosphate (NADPH). When NADPH is deficient or its utilization is impaired, cystine accumulates, leading to the formation of disulfide bonds in the actin cytoskeleton, triggering disulfidptosis. Disulfidptosis reveals a metabolic vulnerability in tumors, offering new insights into cancer therapy strategies. This review provides a detailed overview of the mechanisms underlying disulfidptosis, the current research progress, and limitations. It also highlights innovative strategies for inducing disulfidptosis and explores the potential of combining these approaches with traditional cancer therapies, particularly immunotherapy, to expedite clinical translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480524 | PMC |
http://dx.doi.org/10.1002/mco2.791 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Hepatobiliary Surgery, the First Affiliated Hospital, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Disulfidptosis is a newly discovered type of regulated cell death triggered by disulfide bond accumulation and NADPH (nicotinamide adenine dinucleotide phosphate) depletion due to glucose deprivation. However, the regulatory mechanisms involving additional cellular circuits remain unclear. Excessive disulfide bond accumulation can impair endoplasmic reticulum (ER) homeostasis and activate the ER stress response.
View Article and Find Full Text PDFACS Nano
December 2024
Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, P.R. China.
Ferroptosis plays an important role in radiotherapy (RT), and the induction of ferroptosis can effectively sensitize radiotherapy. However, the therapeutic efficiency is always affected by ferroptosis resistance, especially SLC7A11 (Solute Carrier Family 7 Member 11)-cystine-cysteine-GSH (glutathione)-GPX4 (glutathione peroxidase 4) pathway-mediated resistance. In this study, tumor-microenvironment self-activated high-Z element-containing nanoferroptosis inducers, PEGylated Fe-Bi-SS metal-organic frameworks (FBSP MOFs), were developed to sensitize RT.
View Article and Find Full Text PDFCell Death Differ
December 2024
Division of Hematology and Oncology, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, USA.
Disulfidptosis is a recently identified form of cell death characterized by the aberrant accumulation of cellular disulfides. This process primarily occurs in glucose-starved cells expressing higher levels of SLC7A11 and has been proposed as a therapeutic strategy for cancers with hyperactive SCL7A11. However, the potential for inducing disulfidptosis through other mechanisms in cancers remains unclear.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Gastroenterology, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213003, China.
Disulfidptosis, a recently identified pathway of cellular demise, served as the focal point of this research, aiming to pinpoint relevant lncRNAs that differentiate between hepatocellular carcinoma (HCC) with and without vascular invasion while also forecasting survival rates and responses to immunotherapy in patients with vascular invasion (VI+). First, we identified 300 DRLRs in the TCGA database. Subsequently, utilizing univariate analysis, LASSO-Cox proportional hazards modeling, and multivariate analytical approaches, we selected three DRLRs (AC009779.
View Article and Find Full Text PDFDiscov Oncol
December 2024
Department of Neurosurgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, China.
Background: Disulfidptosis has recently emerged as a novel form of regulated cell death (RCD). Evasion of cell death is a hallmark of cancer, and the resistance of many tumors to apoptosis-inducing therapies has heightened interest in exploring alternative RCD mechanisms.
Methods: Transcriptomic and clinical data were obtained from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!