Developing antifouling biosensors capable of performing robustly in complex human body fluids is crucial for biomarker diagnosis and health monitoring. Herein, an antifouling and highly sensitive and stable biosensor was constructed through the self-assembly of the designed conjugates composed of a multifunctional peptide (MP) and PEGylated distearoylphosphatidylethanolamine (DSPE-PEG). The self-assembly capability of the DSPE-PEG-MP was demonstrated clearly through coarse-grained molecular dynamics simulation and transmission electron microscopy, and it can be effectively self-assembled onto the electrode surface modified with gold nanoparticles. The MP was designed to be antifouling and contained a peptide sequence that can specifically bind the target protein Annexin A1 (ANXA1), and the D-type amino acid composition of MP can enhance its resistance to enzymatic hydrolysis. The unique design of MP, in conjugation with the self-assembly capability of the PEGylated phospholipid DSPE-PEG, enabled the biosensor to exhibit excellent antifouling capability and stability in various complex human body fluids. The biosensor was capable of sensitively and selectively quantifying ANXA1 and achieved a limit of detection down to 0.12 pg mL. More importantly, the biosensor demonstrated satisfactory accuracy for ANXA1 detection in clinical serum samples, as verified by the enzyme linked immunosorbent assay (ELISA) kits. It is expected that various antifouling biosensors suitable for application in complex biological environments can be constructed by utilizing the strategy of designing similar DSPE-PEG-MP conjugates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c02425 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!