Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Multinuclear molecular catalysts mimicking natural photosynthesis have been shown to facilitate water oxidation; however, such catalysts typically operate in organic solutions, require high overpotentials and have unclear catalytic mechanisms. Herein, a bio-inspired hexanuclear iron(III) complex I, Fe(μ-O)(μ-OH)(bipyalk)(OAc) (Hbipyalk = 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol); OAc = acetate) with desirable water solubility and stability was designed and used for water oxidation. Our results showed that I has high efficiency for water oxidation the water nucleophilic attack (WNA) pathway with an overpotential of only 290 mV in a phosphate buffer of pH 2. Importantly, key high-oxidation-state metal-oxo intermediates formed during water oxidation were identified by spectroelectrochemistry and oxygen atom transfer reactions. Theoretical calculations further supported the above identification. Reversible proton transfer and charge redistribution during water oxidation enhanced the electron and proton transfer ability and improved the reactivity of I. Here, we have shown the multimetal synergistic and electronic effects of catalysts in water oxidation reactions, which may contribute to the understanding and design of more advanced molecular catalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4dt02749c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!