Chloroplast Unusual Positioning 1 (CHUP1) plays an important role in the chloroplast avoidance and accumulation responses in mesophyll cells. In epidermal cells, prior research showed silencing CHUP1-induced chloroplast stromules and amplified effector-triggered immunity (ETI); however, the underlying mechanisms remain largely unknown. CHUP1 has a dual function in anchoring chloroplasts and recruiting chloroplast-associated actin (cp-actin) filaments for blue light-induced movement. To determine which function is critical for ETI, we developed an approach to quantify chloroplast anchoring and movement in epidermal cells. Our data show that silencing NbCHUP1 in Nicotiana benthamiana plants increased epidermal chloroplast de-anchoring and basal movement but did not fully disrupt blue light-induced chloroplast movement. Silencing NbCHUP1 auto-activated epidermal chloroplast defense (ECD) responses including stromule formation, perinuclear chloroplast clustering, the epidermal chloroplast response (ECR), and the chloroplast reactive oxygen species (ROS), hydrogen peroxide (HO). These findings show chloroplast anchoring restricts a multifaceted ECD response. Our results also show that the accumulated chloroplastic HO in NbCHUP1-silenced plants was not required for the increased basal epidermal chloroplast movement but was essential for increased stromules and enhanced ETI. This finding indicates that chloroplast de-anchoring and HO play separate but essential roles during ETI.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583462 | PMC |
http://dx.doi.org/10.1111/nph.20147 | DOI Listing |
Microsc Res Tech
December 2024
Institute of Photonics and Photon-Technology, Northwest University, Xi'an, China.
Nonlinear multimode imaging is a versatile tool to realize complex structural and compositional information of biological samples. In this study, we presented a novel integrated multimode nonlinear optical microscopy system by using an Er3 + -doped femtosecond fiber laser. The system could perform second harmonic generation (SHG), third harmonic generation (THG), and three-photon fluorescence (3PEF) imaging modes simultaneously.
View Article and Find Full Text PDFPhytoKeys
December 2024
Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China Fujian Agriculture and Forestry University Fuzhou China.
C.An & G.C.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China. Electronic address:
J Microsc
December 2024
Biology Department and the Molecular and Environmental Plant Sciences Program, Texas A&M University, College Station, Texas, USA.
The endoplasmic reticulum (ER) forms contact sites with the chloroplast. Exposing contact sites that contain both the chloroplast and the ER to localised high-fluence, wavelength specific, 405 nm violet light, hereinafter referred to as photostimulation, induces multiple, potentially interacting intra- and intercellular responses. The responses vary depending on the tissue type of the cell and the chloroplast.
View Article and Find Full Text PDFPlant Physiol Biochem
November 2024
Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China. Electronic address:
To date, only a few submerged plants have been reported to perform C and CAM. Ottelia cordata is a heteroblastic aquatic plant developing both submerged and floating leaves throughout its life cycle. Previous research found that, besides HCO use, the submerged leaves of O.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!