Eukaryotic innate immune systems use pattern recognition receptors to sense infection by detecting pathogen-associated molecular patterns, which then triggers an immune response. Bacteria have similarly evolved immunity proteins that sense certain components of their viral predators, known as bacteriophages. Although different immunity proteins can recognize different phage-encoded triggers, individual bacterial immunity proteins have been found to sense only a single trigger during infection, suggesting a one-to-one relationship between bacterial pattern recognition receptors and their ligands. Here we demonstrate that the antiphage defence protein CapRel in Escherichia coli can directly bind and sense two completely unrelated and structurally different proteins using the same sensory domain, with overlapping but distinct interfaces. Our results highlight the notable versatility of an immune sensory domain, which may be a common property of antiphage defence systems that enables them to keep pace with their rapidly evolving viral predators. We found that Bas11 phages harbour both trigger proteins that are sensed by CapRel during infection, and we demonstrate that such phages can fully evade CapRel defence only when both triggers are mutated. Our work shows how a bacterial immune system that senses more than one trigger can help prevent phages from easily escaping detection, and it may allow the detection of a broader range of phages. More generally, our findings illustrate unexpected multifactorial sensing by bacterial defence systems and complex coevolutionary relationships between them and their phage-encoded triggers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578894 | PMC |
http://dx.doi.org/10.1038/s41586-024-08039-y | DOI Listing |
J Biomol Struct Dyn
January 2025
University of Health Sciences, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
The COVID-19 pandemic posed a threat to global society. Delta and Omicron are concerning variants due to the risk of increasing human-to-human transmissibility and immune evasion. This study aims to evaluate the binding ability of these variants toward the angiotensin-converting enzyme 2 receptor and antibodies using a computational approach.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
Hydrogen sulfide (HS)-mediated protein S-sulfhydration has been shown to play critical roles in several diseases. Tumor-associated macrophages (TAMs) are the predominant population of immune cells present within solid tumor tissues, and they function to restrict antitumor immunity. However, no previous study has investigated the role of protein S-sulfhydration in TAM reprogramming in breast cancer (BC).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, 420 Delaware St SE, MMC 609, Minneapolis, MN, 55455, USA.
Within ovarian cancer research, patient-derived xenograft (PDX) models recapitulate histologic features and genomic aberrations found in original tumors. However, conflicting data from published studies have demonstrated significant transcriptional differences between PDXs and original tumors, challenging the fidelity of these models. We employed a quantitative mass spectrometry-based proteomic approach coupled with generation of patient-specific databases using RNA-seq data to investigate the proteogenomic landscape of serially-passaged PDX models established from two patients with distinct subtypes of ovarian cancer.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Center for Translational Research in Hematologic Malignancies, Houston Methodist Neal Cancer Center, Houston Methodist Research Institute, Houston, Texas, USA
Background: Cancer immunotherapy using immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, patients with multiple myeloma (MM) rarely respond to ICB. Accumulating evidence indicates that the complicated tumor microenvironment (TME) significantly impacts the efficacy of ICB therapy.
View Article and Find Full Text PDFTransplant Proc
January 2025
Gastroenterolgy and Hepatology Department, Group of Clinical and Translational Research in Liver Diseases, Research Institution Valdecilla (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain. Electronic address:
Background: The Omicron variant of SARS-CoV-2 emerged as a new variant of concern, characterized by high transmissibility and lower severity compared with previous variants, and became the majority variant in the sixth wave in Spain. This study aims to assess the impact of SARS-CoV-2 infection on liver transplant recipients (LTRs) during 2023 in the population of Cantabria.
Methods: The study included 295 LTRs undergoing follow-up at the Liver Transplant Unit of the Marqués de Valdecilla University Hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!