Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique that provides information about the Brownian motion of water molecules within biological tissues. DWI plays a crucial role in stroke imaging and oncology, but its diagnostic value can be compromised by the inherently low signal-to-noise ratio (SNR). Conventional supervised deep learning-based denoising techniques encounter challenges in this domain as they necessitate noise-free target images for training. This work presents a novel approach for denoising and evaluating DWI scans in a self-supervised manner, eliminating the need for ground-truth data. By leveraging an adapted version of Stein's unbiased risk estimator (SURE) and exploiting a phase-corrected combination of repeated acquisitions, we outperform both state-of-the-art self-supervised denoising methods and conventional non-learning-based approaches. Additionally, we demonstrate the applicability of our proposed approach in accelerating DWI scans by acquiring fewer image repetitions. To evaluate denoising performance, we introduce a self-supervised methodology that relies on analyzing the characteristics of the residual signal removed by the denoising approaches.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484701 | PMC |
http://dx.doi.org/10.1038/s41598-024-75007-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!