The positron annihilation lifetime (PAL) spectroscopy characteristics of ethylene-propylene-diene monomer rubber (EPDM) composites reinforced with treated wheat husk fibers (WHFs) were investigated for the first time. PAL spectroscopy is employed to study the free volume of polymers. The use of lignocellulosic materials as reinforcement in polymeric composites has gained attention due to their low cost, availability, and eco-friendliness. In this study, the impact of the loading concentration on the interfacial adhesion between the EPDM matrix and WHFs is quantified, along with the evaluation of swelling measurement and tensile properties. Additionally, the nanoscopic properties derived from PAL spectroscopy correlate with the composites' macroscopic properties. In addition, the dielectric properties of the investigated samples have been studied, and their conductivity has been calculated. To determine the conduction mechanism within these samples and how it is affected by the addition of WHF, the change in electrical conductivity with the frequency of the external electric field applied to the samples was studied, and from this, the conduction mechanism was determined, and the barrier height value was calculated. The experimental results provide insights into the relationship between the structure and properties of EPDM-WHF biocomposites, offering valuable knowledge for developing sustainable and high-performance materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484812PMC
http://dx.doi.org/10.1038/s41598-024-73594-3DOI Listing

Publication Analysis

Top Keywords

pal spectroscopy
12
positron annihilation
8
treated wheat
8
wheat husk
8
husk fibers
8
samples studied
8
conduction mechanism
8
properties
6
study mechanical
4
mechanical electrical
4

Similar Publications

The bacterium responsible for Lyme disease, , accumulates high levels of manganese without iron and possesses a polyploid genome, characteristics suggesting potential extreme resistance to radiation. Contrary to expectations, we report that wild-type B31 cells are radiosensitive, with a gamma-radiation survival limit for 10 wild-type cells of <1 kGy. Thus, we explored radiosensitivity through electron paramagnetic resonance (EPR) spectroscopy by quantitating the fraction of Mn present as antioxidant Mn metabolite complexes (H-Mn).

View Article and Find Full Text PDF

Innovative auxin-micronutrient based nanocomposites (IAA-FeONPs and IAA-MnONPs) shield strawberry plants from lead toxicity.

Plant Physiol Biochem

December 2024

Department of Pomology, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt; Biology Research & Studies Institute, Assiut University, Assiut, 71526, Egypt. Electronic address:

Smart nanohybrid technology with potential advantages to plants has recently been developed formanaging the widespread pollution of heavy metals. Herein, we disclose a novel strategy to combat Pb stress in strawberry (Fragaria spp. cv.

View Article and Find Full Text PDF

In this work, we report an intuitive magnetron sputtering technique for the synthesis of vertically aligned MoS (v-MS) nanostructures. The morphology and orientation of the as-synthesized nanostructures can be modified by altering the parameters of the sputtering process. This work emphasizes the versatility of magnetron sputtering to synthesize edge-enriched vertically aligned 2D nanostructures.

View Article and Find Full Text PDF

Microplastics (MPs) have become a critical pollutant, accumulating in aquatic ecosystems and posing significant environmental and human health risks. Approximately 5.25 trillion plastic particles float in global oceans, releasing up to 23,600 metric tonnes of dissolved organic carbon annually, which disrupts microbial dynamics.

View Article and Find Full Text PDF

Charge noise in low Schottky barrier multilayer tellurium field-effect transistors.

Nanoscale

December 2024

Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Sector III, Block JD, Salt Lake, Kolkata 700106, India.

Creating van der Waals (vdW) homojunction devices requires materials with narrow bandgaps and high carrier mobilities for bipolar transport, which are crucial for constructing fundamental building blocks like diodes and transistors in a 2D architecture. Following the recent discovery of elemental 2D tellurium, here, we systematically investigate the electrical transport and flicker noise of hydrothermally grown multilayer tellurium field effect transistors. While the devices exhibit a dominant p-type behavior with high hole mobilities up to ∼242 cm V s at room temperature and almost linear current-voltage characteristics down to 77 K, ambipolar behavior was observed in some cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!