AI Article Synopsis

  • Accurate assessment of the mechanical properties of organic-rich shale during maturation is challenging, involving nanoindentation methods and geochemical analyses.
  • The mechanical properties evolve through the main oil-generation stage to the condensate oil and gas generation stage, with organic matter becoming stiffer due to increased aromaticity.
  • While the clay matrix initially softens at low maturity levels due to liquid hydrocarbon generation, it ultimately becomes stiffer with maturation due to dehydration and changes in mineral structure, leading to increased Young's modulus and hardness in the bulk shale.

Article Abstract

Accurate assessment of the mechanical properties of organic matter, clay matrix, and bulk shale during maturation remains a challenge. Here, we aim to assess the mechanical properties of organic-rich shale during maturation using a combination of nanoindentation methods and various geochemical analyses, i.e., mineral composition, mass loss rate, chemical structure of organic matter, and Rock-Eval analyses. Results show that the evolution of mechanical properties of organic matter in shale during maturation can be divided into: the main oil-generation stage, and the condensate oil and gas generation stage. The stiffening of organic matter in the shale is mainly due to increased aromaticity and condensation of aromatic groups. The clay matrix experiences a slight decrease in hardness and Young's modulus at low maturity levels due to the generation of liquid hydrocarbons. However, overall, the clay matrix becomes stiffer as the shale matures due to shale dehydration, expulsion or cracking of liquid hydrocarbons, transformation of clay minerals, and hardening of organic matter. The Young's modulus and hardness of bulk shale generally increase with increasing maturity. This is closely related to the hardening of organic matter and clay matrix, as well as the development of the more compact and dense microstructure in the shale.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11484891PMC
http://dx.doi.org/10.1038/s41598-024-75035-7DOI Listing

Publication Analysis

Top Keywords

organic matter
24
mechanical properties
16
clay matrix
16
shale maturation
12
shale
9
evolution mechanical
8
properties organic-rich
8
organic-rich shale
8
properties organic
8
matter clay
8

Similar Publications

Long-term effects of combining anaerobic digestate with other organic waste products on soil microbial communities.

Front Microbiol

January 2025

Agroécologie, French National Institute for Agriculture, Food, and Environment (INRAE), Institut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, Dijon, France.

Introduction: Agriculture is undergoing an agroecological transition characterized by adopting new practices to reduce chemical fertilizer inputs. In this context, digestates are emerging as sustainable substitutes for mineral fertilizers. However, large-scale application of digestates in agricultural fields requires rigorous studies to evaluate their long-term effects on soil microbial communities, which are crucial for ecosystem functioning and resilience.

View Article and Find Full Text PDF

The active layer soils of Greenlandic permafrost areas can function as important sinks for volatile organic compounds.

Commun Earth Environ

January 2025

Center for Volatile Interactions (VOLT), Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark.

Permafrost is a considerable carbon reservoir harboring up to 1700 petagrams of carbon accumulated over millennia, which can be mobilized as permafrost thaws under global warming. Recent studies have highlighted that a fraction of this carbon can be transformed to atmospheric volatile organic compounds, which can affect the atmospheric oxidizing capacity and contribute to the formation of secondary organic aerosols. In this study, active layer soils from the seasonally unfrozen layer above the permafrost were collected from two distinct locations of the Greenlandic permafrost and incubated to explore their roles in the soil-atmosphere exchange of volatile organic compounds.

View Article and Find Full Text PDF

Glufosinate (GLUF) and glyphosate (GLY) are nonselective phosphorus-containing amino acid herbicides that are widely used in agricultural gardens and noncultivated areas. These herbicides give rise to a number of key metabolites, with 3-methyl phosphinicopropionic acid (MPPA), -acetyl glufosinate (-acetyl GLUF), aminomethyl phosphonic acid (AMPA), -acetyl aminomethyl phosphonic acid (-acetyl AMPA), -acetyl glyphosate (-acetyl GLY), -methyl glyphosate (-methyl GLY) as the major metabolites obtained from GLUF and GLY. Extensive use of these herbicides may lead to their increased presence in the environment, especially aquatic ecosystems.

View Article and Find Full Text PDF

Linking Research Data with Physically Preserved Research Materials in Chemistry.

Sci Data

January 2025

Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology, Kaiserstraße 12, 76131, Karlsruhe, Germany.

Results of scientific work in chemistry can usually be obtained in the form of materials and data. A big step towards transparency and reproducibility of the scientific work can be gained if scientists publish their data in research data repositories in a FAIR manner. Nevertheless, in order to make chemistry a sustainable discipline, obtaining FAIR data is insufficient and a comprehensive concept that includes preservation of materials is needed.

View Article and Find Full Text PDF

Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: a case study of a semiconductor plant in Beijing.

Environ Res

January 2025

Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China.

The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!