A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Lacunocanalicular Network is Denser in C57BL/6 Compared to BALB/c Mice. | LitMetric

The lacunocanalicular network (LCN) is an intricate arrangement of cavities (lacunae) and channels (canaliculi), which permeates the mineralized bone matrix. In its porosity, the LCN accommodates the cell network of osteocytes. These two nested networks are attributed a variety of essential functions including transport, signaling, and mechanosensitivity due to load-induced fluid flow through the LCN. For a more quantitative assessment of the networks' function, the three-dimensional architecture has to be known. For this reason, we aimed (i) to quantitatively characterize spatial heterogeneities of the LCN in whole mouse tibial cross-sections of BALB/c mice and (ii) to analyze differences in LCN architecture by comparison with another commonly used inbred mouse strain, the C57BL/6 mouse. Both tibiae of five BALB/c mice (female, 26-week-old) were stained using rhodamine 6G and whole tibiae cross-sections were imaged using confocal laser scanning microscopy. Using image analysis, the LCN was quantified in terms of density and connectivity and lacunar parameters, such as lacunar degree, volume, and shape. In the same tibial cross-sections, the calcium content was measured using quantitative backscattered electron imaging (qBEI). A structural analysis of the LCN properties showed that spatially denser parts of the LCN are mainly due to a higher density of branching points in the network. While a high intra-individual variability of network density was detected within the cortex, the inter-individual variability between different mice was low. In comparison to C57BL/6J mice, BALB/c mice showed a distinct lower canalicular density. This reduced network was already detectable on a local network level with fewer canaliculi emanating from lacunae. Spatial correlation with qBEI images demonstrated that bone modeling resulted in disruptions in the network architecture. The spatial heterogeneity and differences in density of the LCN likely affects the fluid flow within the network and therefore bone's mechanoresponse to loading.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531440PMC
http://dx.doi.org/10.1007/s00223-024-01289-yDOI Listing

Publication Analysis

Top Keywords

balb/c mice
16
lcn
9
lacunocanalicular network
8
network
8
fluid flow
8
tibial cross-sections
8
analysis lcn
8
mice
6
density
5
network denser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!