Genomic characterization and proteomic analysis of Bacillus amyloliquefaciens in response to lignin.

Int J Biol Macromol

College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071000, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071000, China. Electronic address:

Published: November 2024

AI Article Synopsis

  • - This study focuses on how the bacteria Bacillus amyloliquefaciens MN-13 breaks down lignin, achieving a lignin removal rate of 38.0% in mineral salt medium after 36 hours under specific conditions.
  • - Whole-genome sequencing and proteomic analysis revealed 831 differentially expressed proteins when the bacteria were exposed to lignin, with specific proteins linked to metabolism and energy production being up-regulated.
  • - The genomic analysis highlighted that MN-13 contains enzymes necessary for lignin degradation, particularly via the meta-cleavage pathway of catechol, providing new insights into its lignin-decomposing capabilities.

Article Abstract

This study examined the lignin degradation characteristics of Bacillus amyloliquefaciens MN-13. Specifically, whole-genome sequencing and comparative proteomic analysis were performed to investigate the responses of the MN-13 strain to lignin. A maximum lignin removal of 38.0 % was achieved after 36 h of inoculation in mineral salt medium with 0.2 g/L alkaline lignin, under the following conditions: the carbon to nitrogen ratio C/N = 1/1; inoculum size 6 %; addition of glucose as an exogenous carbon source. When the MN-13 strain was inoculated into mineral salt medium with and without lignin, respectively, 831 differentially expressed proteins were identified, 404 of which were up-regulated and 427 were down-regulated. Enrichment analysis revealed that up-regulated proteins were associated with microbial metabolism in diverse environment, biosynthesis of amino acids, and pathways related to energy production, including carbon metabolism, pyruvate metabolism, the TCA cycle etc. Genomic analysis revealed that the MN-13 strain possesses many ligninolytic enzymes and aromatics degradation pathway, including benzoate degradation and aminobenzoate degradation etc. Taken together, the proteomic and genomic analyses indicated that the meta-cleavage pathway of catechol, including benzoate degradation, etc., is the main lignin degradation pathway. These findings provide new insight into lignin degradation mediated by B. amyloliquefaciens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.136611DOI Listing

Publication Analysis

Top Keywords

lignin degradation
12
mn-13 strain
12
proteomic analysis
8
bacillus amyloliquefaciens
8
lignin
8
mineral salt
8
salt medium
8
analysis revealed
8
degradation pathway
8
including benzoate
8

Similar Publications

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Important ecophysiological roles of Nocardiopsis in lignocellulose degradation during aerobic compost with humic acid addition.

J Environ Manage

December 2024

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin, 150080, China. Electronic address:

Improving lignocellulose degradation and organic matter conversion in agricultural and livestock wastes remains a great challenge. Here, the contribution of humic acid (HA) to lignocellulose degradation was investigated, focusing on the abundance of key microbial species and carbohydrate-active enzymes during aerobic composting. The results demonstrated that the addition of HA not only increased the complexity of the microbial network, but also enhanced the positive interaction between microorganism.

View Article and Find Full Text PDF

17β-estradiol (E2) is an endocrine disruptor, and even trace concentrations (ng/L) of environmental estrogen can interfere with the endocrine system of organisms. Lignin holds promise in enhancing the microbial degradation E2. However, the mechanisms by which lignin facilitates this process remain unclear, which is crucial for understanding complex environmental biodegradation in nature.

View Article and Find Full Text PDF

Forage sources in total mixed rations on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves.

Sci Rep

December 2024

Department of Animal Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Av. Pádua Dias, n 11, Piracicaba, SP, 1341-900, Brazil.

The inclusion of forage sources in calf diets is often discussed, and the main point debated is whether the inclusion level, particle size, source, and how forage is offered may impact gut fill and reduce body weight gain, as well as impact gastrointestinal tract development. This study aimed to determine the effects of feeding forage sources with different qualities on rumen fermentation, gut fill, and development of the gastrointestinal tract of dairy calves. Forty-eight Holstein dairy calves were blocked according to sex and body weight (BW) at 28 days of life and randomly assigned to 1 of 4 dietary treatments.

View Article and Find Full Text PDF

Polycyclic aromatic compounds and petroleum hydrocarbons (PHs) are hazardous pollutants and seriously threaten the environment and human health. However, native microbial communities can adapt to these toxic pollutants, utilize these compounds as a carbon source, and eventually evolve to degrade these toxic contaminants. With this in mind, we isolated 26 bacterial strains from various environmental soil samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!