A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide species delimitation and quantification of the extent of introgression in eriophyoid mite Epitrimerus sabinae complex (Acariformes: Eriophyoidea). | LitMetric

AI Article Synopsis

  • - The E. sabinae complex, a group of small arthropods within the Eriophyoidea, presents challenges in identifying distinct species due to their similar physical traits and limited morphological variation.
  • - By analyzing thousands of genetic data points from 55 specimens, researchers identified ten separate species within this complex, demonstrating both genetic isolation and instances of gene flow among them.
  • - The study indicates that these species experienced rapid evolutionary changes and distinct population sizes during the Quaternary period, showcasing the complexity of species delimitation and the potential for genetic mixing across species lines.

Article Abstract

Species complex hinders the exploration of terrestrial species diversity, particularly in small arthropod lineages that are morphologically indistinguishable from each other. The Epitrimerus sabinae complex in the Eriophyoidea provides a valuable case study in species complex delimitation, as they exhibit limited morphological variations. In this study, we obtained thousands of nuclear genomic single-nucleotide polymorphisms via whole-genome sequencing from 55 E. sabinae complex specimens, covering their potential all known distribution ranges. We implemented a framework to infer cryptic speciation, which involved phylogenetic and genetic clustering to identify potential species, followed by population demographic assessment to confirm lineage independence (and thus species status). Our results demonstrate that the E. sabinae complex comprises ten distinct species. These species range from highly divergent, genetically isolated lineages, to differentiated populations involving gene flow. This gene flow is widespread across species boundaries, indicating potential genetic introgression among them. Additionally, demographic analyses revealed that the ten species have followed unique trajectories in size change during the Quaternary period. Time-calibrated phylogenies further showed that speciation in the E. sabinae complex occurred rapidly, resulting in a rapid radiation during the Neogene period. Collectively, parallelism/convergence and recent divergence involving multiple gene flows may explain the homoplasy of E. sabinae complex. Our results highlight the integrated approach in species complex delimitation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2024.108220DOI Listing

Publication Analysis

Top Keywords

sabinae complex
24
species complex
12
species
10
complex
9
epitrimerus sabinae
8
complex delimitation
8
gene flow
8
sabinae
6
genome-wide species
4
species delimitation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!