Breast cancer is the most common invasive cancer in women worldwide, having a significant impact on women's well-being. Early diagnosis of breast cancer followed by appropriate treatment is considered the best survival factor. Microneedles (MN) have been utilized for non-invasive localized breast cancer treatment. The combination of nano-carriers with MN technology represents an appealing strategy for improving drug delivery efficacy. It is worth noting that atorvastatin (ATV) has received substantial interest as a drug with potential anticancer activity. Our study aimed to formulate an ATV-loaded bioactive pumpkin seed oil vesicular nanocarrier; pumpkisomes (PUMP) for enhanced localized delivery to breast cancer using MN. The selected PUMP formulation had a particle size of 151.8 ± 2.7 nm, zeta potential of -54.1 mV, and % entrapment efficiency of 73 %. PUMP showed a sustained ATV release, potent selective cytotoxic effect (IC of 2.82 ± 0.02 μg/mL), enhanced internalization (2.8-fold increase compared to the free drug), and potent anti-migratory effect on MDA-MB-231 cells (21.15 ± 3.6 % wound closure compared to 80.81 ± 4.1 % for free drug). Moreover, integrating ATV-PUMP in dissolving microneedles (ATV-PUMP@dMN) showed a quick dissolution rate and appropriate mechanical strength with high piercing efficiency. ATV permeation across the skin from ATV-PUMP@dMN was also improved (1.8-fold increase compared to ATV-PUMP@gel). ATV-PUMP@dMN demonstrated an efficient anticancer effect when applied in an Ehrlich ascites mammary tumor model attaining significant improvement in ATV antiproliferative (PTEN and Ki-67), antiangiogenic (VEGF) and apoptotic (Bcl2, Bax and caspase3) effects restoring tumor biomarkers to levels comparable to the negative control group. Thus, our study presents PUMP as a novel and promising bioactive vesicular nanosystem with potential synergistic effect with ATV or other antitumor drugs. PUMP-integrated MN could be considered a promising platform for future applications in localized breast cancer therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2024.10.013DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
cancer therapy
8
localized delivery
8
localized breast
8
increase compared
8
free drug
8
cancer
7
breast
6
atv
5
microneedles integrated
4

Similar Publications

Objective.—: To report the isolation and significance of C kroppenstedtii, features of patients with GLM, pathologic findings and mechanism, bacteriologic workup, and optimal treatment.

Design.

View Article and Find Full Text PDF

Objectives: To assess the impact of the transition from film to digital mammography in the Australian national breast cancer screening program.

Study Design: Retrospective linked population health data analysis (New South Wales Central Cancer Registry, BreastScreen NSW); interrupted time series analysis.

Setting: New South Wales, 2002-2016.

View Article and Find Full Text PDF

Background: Nearly 25% of opioid-related deaths are from prescribed opioids, and the exacerbation of the opioid epidemic by the coronavirus disease 2019 (COVID-19) pandemic underscores the urgent need to address superfluous prescribing. Therefore, we sought to align local opioid prescribing practices with national guidelines in postoperative non-metastatic breast cancer patients.

Methods: A single-institution analysis included non-metastatic breast surgery patients treated between April 2020 and July 2021.

View Article and Find Full Text PDF

Recent evidence indicates that endocrine resistance in estrogen receptor-positive (ER+) breast cancer is closely correlated with phenotypic characteristics of epithelial-to-mesenchymal transition (EMT). Nonetheless, identifying tumor tissues with a mesenchymal phenotype remains challenging in clinical practice. In this study, we validated the correlation between EMT status and resistance to endocrine therapy in ER+ breast cancer from a transcriptomic perspective.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!