Pre-existing visual responses in a projection-defined dopamine population explain individual learning trajectories.

Curr Biol

Princeton Neuroscience Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA; Howard Hughes Medical Institute, Princeton University, Washington Road, Princeton, NJ 08540, USA. Electronic address:

Published: November 2024

A key challenge of learning a new task is that the environment is high dimensional-there are many different sensory features and possible actions, with typically only a small reward-relevant subset. Although animals can learn to perform complex tasks that involve arbitrary associations between stimuli, actions, and rewards, a consistent and striking result across varied experimental paradigms is that in initially acquiring such tasks, large differences between individuals are apparent in the learning process. What neural mechanisms contribute to initial task acquisition, and why do some individuals learn a new task much more quickly than others? To address these questions, we recorded longitudinally from dopaminergic (DA) axon terminals in mice learning a visual decision-making task. Across striatum, DA responses tracked idiosyncratic and side-specific learning trajectories, consistent with widespread reward prediction error coding across DA terminals. However, even before any rewards were delivered, contralateral-side-specific visual responses were present in DA terminals, primarily in the dorsomedial striatum (DMS). These pre-existing responses predicted the extent of learning for contralateral stimuli. Moreover, activation of these terminals improved contralateral performance. Thus, the initial conditions of a projection-specific and feature-specific DA signal help explain individual learning trajectories. More broadly, this work suggests that functional heterogeneity across DA projections may serve to bias target regions toward learning about different subsets of task features, providing a potential mechanism to address the dimensionality of the initial task learning problem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11579926PMC
http://dx.doi.org/10.1016/j.cub.2024.09.045DOI Listing

Publication Analysis

Top Keywords

learning trajectories
12
learning
9
visual responses
8
explain individual
8
individual learning
8
initial task
8
task
6
pre-existing visual
4
responses
4
responses projection-defined
4

Similar Publications

Predicting host health status through an integrated machine learning framework: insights from healthy gut microbiome aging trajectory.

Sci Rep

December 2024

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

The gut microbiome, recognized as a critical component in the development of chronic diseases and aging processes, constitutes a promising approach for predicting host health status. Previous research has underscored the potential of microbiome-based predictions, and the rapid advancements of machine learning techniques have introduced new opportunities for exploiting microbiome data. To predict various host nonhealthy conditions, this study proposed an integrated machine learning-based estimation pipeline of Gut Age Index (GAI) by establishing a health aging baseline with the gut microbiome data from healthy individuals.

View Article and Find Full Text PDF

Generative Artificial Intelligence (AI), characterized by its ability to generate diverse forms of content including text, images, video and audio, has revolutionized many fields, including medical education. Generative AI leverages machine learning to create diverse content, enabling personalized learning, enhancing resource accessibility, and facilitating interactive case studies. This narrative review explores the integration of generative artificial intelligence (AI) into orthopedic education and training, highlighting its potential, current challenges, and future trajectory.

View Article and Find Full Text PDF

DAT: Deep Learning-Based Acceleration-Aware Trajectory Forecasting.

J Imaging

December 2024

School of Innovation, Design and Technology (IDT), Mälardalen University, 72123 Västerås, Sweden.

As the demand for autonomous driving (AD) systems has increased, the enhancement of their safety has become critically important. A fundamental capability of AD systems is object detection and trajectory forecasting of vehicles and pedestrians around the ego-vehicle, which is essential for preventing potential collisions. This study introduces the Deep learning-based Acceleration-aware Trajectory forecasting (DAT) model, a deep learning-based approach for object detection and trajectory forecasting, utilizing raw sensor measurements.

View Article and Find Full Text PDF

Machine Learning-Driven Innovations in Microfluidics.

Biosensors (Basel)

December 2024

Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.

Microfluidic devices have revolutionized biosensing by enabling precise manipulation of minute fluid volumes across diverse applications. This review investigates the incorporation of machine learning (ML) into the design, fabrication, and application of microfluidic biosensors, emphasizing how ML algorithms enhance performance by improving design accuracy, operational efficiency, and the management of complex diagnostic datasets. Integrating microfluidics with ML has fostered intelligent systems capable of automating experimental workflows, enabling real-time data analysis, and supporting informed decision-making.

View Article and Find Full Text PDF

In this paper, a deep reinforcement learning (DRL) approach based on generative adversarial imitation learning (GAIL) and long short-term memory (LSTM) is proposed to resolve tracking control problems for robotic manipulators with saturation constraints and random disturbances, without learning the dynamic and kinematic model of the manipulator. Specifically, it limits the torque and joint angle to a certain range. Firstly, in order to cope with the instability problem during training and obtain a stability policy, soft actor-critic (SAC) and LSTM are combined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!