Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetic Resonance Imaging (MRI) and Magnetic Resonance Spectroscopy (MRS) of non-proton nuclei (X-nuclei) typically require additional proton imaging for anatomical reference and B shimming. Therefore, two RF systems exist, necessitating cable traps to block the unwanted common-mode current at both Larmor frequencies of H and X-nuclei. This study introduces a frequency-independent dual-tuned cable trap that combines a standard solenoid cable trap with a float solenoid trap to independently tune high and low frequencies without compromising performance. The methods involved theoretical analysis, electromagnetic simulations, and bench tests. Two design approaches were evaluated: a float cable trap for H, a non-float cable trap for X-nuclei, and vice versa. Results showed that the design with the float trap for X-nuclei and non-float for H had superior performance, with high common-mode current suppression ability at both frequencies. Bench tests confirmed these findings, demonstrating effectiveness across various static fields and X-nuclei. The proposed frequency-independent dual-tuned cable trap provides a compact and efficient solution for multinuclear MRI and MRS, enhancing safety, image quality, and flexibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmr.2024.107786 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!