A historical analysis of eco-environmental changes in hydrologically regulated lakes.

J Environ Manage

Key Laboratory of Intelligent Health Perception and Ecological Restoration of Rivers and Lakes, Ministry of Education, Hubei University of Technology, Wuhan, 430068, PR China.

Published: November 2024

AI Article Synopsis

  • * A study analyzing 36 lakes revealed that these regulations lead to more stable water levels but poorer water quality, with a notable shift in ecological response time occurring around 1956.
  • * The heightened human pressure on freshwater resources necessitates careful monitoring and management strategies to address potential long-term damage to lake ecosystems as climate change intensifies water stress.

Article Abstract

Human have a long history of implementing hydrological regulations in lakes. With the rapid increase in global population since the mid-20s, the anthropogenic pressure on freshwater resources has intensified, which would result in abrupt change in lake ecosystems. A meta-analysis study had been conducted involving 36 lakes of different types and latitudes from 39 study sites around the world. These lakes were subject to different hydrological regulations between 1900 and 2017. Hydrological regulations tended to result in a more stable water level and poorer water quality. In addition, a turning point occurred in 1956 when the response time interval (RTI)-the time between hydrological regulation implementation and significant ecological change in the lake-decreased significantly since, which coincided with a surge in population size, water and fertilizer usage since the mid-20s. The results of principal component analysis (PCA) emphasized the influence of anthropogenic pressure on the resilience of lakes. The rapid increase of anthropogenic pressure after the mid-20s limited the buffering capacity of large lakes. As the global population continues to grow and water stress is exacerbated by climate change, human may be pressured to implement even larger-scale lake hydrological regulation projects that will likely cause rapid and long-lasting deterioration of these aquatic ecosystems. Environmental resilience analysis combined with multi-indicators is necessary for the monitoring and management of eco-environment changes in regulated lakes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122885DOI Listing

Publication Analysis

Top Keywords

hydrological regulations
12
anthropogenic pressure
12
regulated lakes
8
lakes rapid
8
rapid increase
8
global population
8
hydrological regulation
8
lakes
7
hydrological
5
historical analysis
4

Similar Publications

Heavy metals (HMs) exert a profound influence on soil carbon storage potential. The microbially-mediated association between HM content and carbon structure in riverine sediments remains unclear in lotic ecosystems. We investigated the spatiotemporal variations of HMs content, carbon content and microbial communities in riverine surface sediments, and further explored the chemical structure of sediment organic carbon (OC), the molecular composition of dissolved organic matter (DOM), and their interactions with microorganisms.

View Article and Find Full Text PDF

Landscape pattern plays a crucial role in regulating hydrological and pollutant migration processes. However, there is a lack of quantitative tools to describe the nutrient pollution transport process under the influence of different landscape patterns. To fill this gap, this study presents a new modeling framework, namely the Landscape Pattern-Source Flow Sink model (LP-SFS).

View Article and Find Full Text PDF

Isotopes unveil overestimation of nutrient-driven oxygen deficit in the tidal rivers of Pearl River Delta during the wet season.

Sci Total Environ

December 2024

The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510530, China; National Key Laboratory of Water Environment Simulation and Pollution Control, South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510535, China. Electronic address:

A low dissolved oxygen (DO) concentration in summer has been observed in river-estuary systems worldwide. Many studies have caused our stereotype that biochemical oxygen depletion was higher in summer than in winter; however, there was no direct evidence particularly in the tidal river with complex hydrological and biochemical processes. This study employed natural-abundance and labeled isotopes to quantify seasonal apportionment of biochemical oxygen depletion.

View Article and Find Full Text PDF

Transport of particulate mercury along the reservoir- downstream - estuary continuum during the water-sediment regulation scheme period of Yellow River in 2018.

J Hazard Mater

December 2024

College of Marine Geosciences, Ocean University of China, Qingdao 266100, PR China; Key Laboratory of Submarine Geosciences and Technology, MOE, Ocean University of China, Qingdao 266100, China.

As an important link of mercury (Hg) migration and transformation from land to ocean, rivers have been significantly influenced by anthropogenic activities, resulting in unpredictable environmental influences on the basin and offshore areas. In this study, the particulate Hg content of sediments in Xiaolangdi Reservoir (XLDR), Lijin Hydrological Station, and the Yellow River estuarine area during the water-sediment regulation scheme (WSRS) period in 2018 were analyzed, the characteristics and influencing factors of particulate Hg transport were explored. Our results revealed that the transport flux of particulate Hg into the sea during WSRS was 8.

View Article and Find Full Text PDF

Microbial community and functional shifts across agricultural and urban landscapes within a Lake Erie watershed.

J Environ Manage

December 2024

Great Lakes Institute of Environmental Research, University of Windsor, Windsor, Ontario, N9B 3P4, Canada. Electronic address:

The role of sediment microbial communities in regulating the loss and retention of nutrients in aquatic ecosystems has been increasingly recognised. However, in the Great Lakes, where nutrient mitigation focuses on harmful algal blooms, there are limited studies examining the fundamental role of water/sediment microbes in nutrient biogeochemical cycling. Little is understood in this regard considering the increase in anthropogenic pressure on in-stream biological processes impacting nutrient flux to lakes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!