Effectiveness and impact factors of passive convergence-permeable reactive barrier (PC-PRB): Insights from tracer simulation study.

J Environ Manage

State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Science, Ministry of Ecological Environment, Guangzhou, 510655, China. Electronic address:

Published: November 2024

Passive convergence-permeable reactive barrier (PC-PRB) represents a green and sustainable technology for in-situ remediation of contaminated groundwater. A laboratory-scale PC-PRB tracer simulation system was established to quantify its contaminant plume capture performance using image analysis method. Results indicate that PC-PRB captures the plume 65% wider than C-PRB, which means that fewer PRB sizes and materials volume would be necessary to treat an equivalent contaminated plume. This improvement is due to a significant drawdown within the PC-PRB's passive well, known as the passive hydraulic decompression-convergent flow effect. We further evaluated the effects of water pipe length, hydraulic gradient, and media particle size on PC-PRB's plume capture performance. Results indicate that an increased water pipe length enhances the PC-PRB's plume capture capacity due to greater well drawdown. PC-PRB not only captures the plume but also acts as a hydraulic barrier. The retardation effect of PC-PRB on plume migration increases with water pipe length. Conversely, both hydraulic gradient and media particle size impact the plume capture capacity of PC-PRB by modifying groundwater flow velocity and pollutant dispersion. An increase in either hydraulic gradient or media particle size decreases the plume capture performance of PC-PRB. Therefore, PC-PRB technology may be more effective in contaminated sites characterized by low hydraulic gradients and permeability. Overall, PC-PRB demonstrates significant effectiveness in enhancing plume capture performance, which can notably reduce remediation costs and environmental footprint, broadening its application scope.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2024.122941DOI Listing

Publication Analysis

Top Keywords

plume capture
24
capture performance
16
water pipe
12
pipe length
12
hydraulic gradient
12
gradient media
12
media particle
12
particle size
12
pc-prb
10
plume
10

Similar Publications

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF

The offshore oilfields in the North Sea area are increasingly employed for projects beyond oil production, like carbon capture and storage (CCS). Still, the fossil fuel production from mature fields is significant. It has raised environmental concerns associated with discharging produced waters (PW) and drilling mud into the sea.

View Article and Find Full Text PDF

Multifaceted interactions between marine bacteria and particulate matter exert a major control over the biogeochemical cycles in the oceans. At the microbial scale, free-living bacteria benefit from encountering and harnessing the plumes around nutrient-releasing particles, like phyto-plankton and organic aggregates. However, our understanding of the bacterial potential to reshape these eutrophic microhabitats remains poor, in part because of the traditional focus on fast-moving particles that generate ephemeral plumes with lifetime shorter than the uptake timescale.

View Article and Find Full Text PDF

This study evaluates deployment strategies for artificial oxygenation devices to mitigate coastal hypoxia, particularly in mariculture regions. Focusing on a typical mariculture region in the coastal waters of China, we examined the combined effects of topography, hydrodynamics, and biogeochemical processes. A high-resolution three-dimensional physical-biogeochemical coupled model, validated against observational data from three summer cruises in 2020, accurately captured key drivers of hypoxia.

View Article and Find Full Text PDF

Monitoring greenhouse gas (GHG) emissions is crucial for developing effective mitigation strategies. Recent advances in satellite remote-sensing measurements allow us to track greenhouse gas emissions globally. This study assessed emissions from various point or local sources, particularly power plants in India, using 8 years of concurrent high-spatial resolution OCO-2 satellite measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!