The molecular structure of hydrochars produced from C-enriched glucose under various conditions has been elucidated based on advanced one- and two-dimensional (2D) H-C and C-C solid-state nuclear magnetic resonance (NMR) with spectral editing. Regardless of synthesis conditions, hydrochars consist mostly of oxygen-substituted arene rings (including diphenols) and furans connected by alkyl linkers rich in ketones. Cross-linking nonprotonated and methyne (C-H) alkyl carbons have been identified through spectrally edited 2D NMR. Alkenes and 'quaternary' C-O are observed only at low synthesis temperature, while some clusters of fused arene rings are generated at high temperature. Hydrochar composition is nearly independent of reaction time in the range from 1 to 5 h. Equilibration of C magnetization within 1 s shows that the materials are homogeneous on the 5-nm scale, refuting core-shell models of hydrochar microspheres. While furan C-O carbons bonded to alkyl groups or ketones show distinctive cross peaks in 2D NMR, phenolic C-OH is observed unambiguously by hydroxyl-proton selection. While methylene-linked furan rings are fairly common, the signal previously assigned to furan Cα-Cα linkages is shown to arise from abundant, stable catecholic ortho-diphenols, whose HO-C=C-OH structure is proved by 2DC-C NMR after hydroxyl-proton selection. Quantitative C NMR spectra of low- and high-temperature hydrochars have been matched by chemical-shift simulations for representative structural models. Mixed phenol and furan rings connected by ketones and alkyl linkers provide good fits of the experimental spectra, while literature models dominated by large clusters of fused rings and with few phenols or alkyl-linked ketones do not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ssnmr.2024.101973 | DOI Listing |
Org Lett
December 2024
Technical Institute of Fluorochemistry, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
A three-component reaction of trifluoromethyl enones, phosphine oxides, and alcohols in water solution is developed. This defluorinative reaction occurs through a cascade process involving defluorophosphorylation, defluoroalkyloxylation, and defluoroheteroannulation, enabling the modular synthesis of furans with four distinct substituents: 2-alkyloxy, 3-trifluoromethyl, 4-phosphoryl, and 5-(hetero)aryl groups. Moreover, apart from alcohol substrates, the scope of nucleophiles could be further extended to phenols, azacycles, or sulfonamide.
View Article and Find Full Text PDFChemSusChem
December 2024
Tula State University, BioChemTech Research Center, Pr. Lenina 92, 300012, Tula, RUSSIAN FEDERATION.
The burgeoning field of materials science is currently witnessing a paradigm shift toward the utilization of renewable plant biomass as a viable chemical source for the production of sustainable materials. This trend is substantiated by a significant corpus of recent experimental and theoretical research focused on the synthesis and property analysis of such polymers. Within this context, polybenzoxazines stand out as a pioneering class of thermosetting polymers, distinguished by their exceptional thermal and mechanical characteristics, coupled with the feasibility of synthesizing their precursor monomers from eco-friendly, renewable resources, including plant phenols and furfurylamine.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Laboratory of Bioremediation and Metagenomics Research (LBMR), Department of Environmental Microbiology (DEM), Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, 226 025, Uttar Pradesh, India. Electronic address:
Wastes like sewage, kitchen and industrial are the major sources of environmental pollution and health hazards. Sewage contains 99.9% water and 0.
View Article and Find Full Text PDFPolymers (Basel)
November 2024
MED-Mediterranean Institute for Agriculture, Environment and Development, CHANGE-Global Change and Sustainability Institute, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
Worldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of climate change.
View Article and Find Full Text PDFHeliyon
November 2024
Bapubhai Desaibhai Patel Institute of Paramedical Sciences, Charotar University of Science and Technology, Changa, Gujarat, India.
is a potent human pathogen and a prevalent ESKAPE ( and Enterobacter species). Considerably, becomes a major clinical problem due to numerous AMR genes [extended-spectrum β-lactamase, plasmid-mediated C, carbapenemases, tigecycline resistance, and New Delhi Metallo-β-lactamase-1 (NDM-1)] and can hydrolyze the majority of β-lactam antibiotics. Hence, targeting NDM-1 could be an effective approach to eradicate pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!