Photosensitizers with near-infrared (NIR) excitation, especially above 800 nm which is highly desired for phototherapy, remain rare due to the fast nonradiative relaxation process induced by exciton-vibration coupling. Here, a diketopyrrolopyrrole-derived photosensitizer (DTPA-S) is developed via thionation of carbonyl groups within the diketopyrrolopyrrole skeleton, which results in a large bathochromic shift of 81 nm, endowing the photosensitizer with strong NIR absorption at 712 nm. DTPA-S is then introduced with a functional biomolecule (N-PEG-RGD) via click reaction for the construction of integrin αvβ3 receptor-targeted nano-micelles (NanoDTPA-S/RGD), which endows the photosensitizer with a further superlarge absorption redshift of 138 nm, thus extending the absorption maxima to ≈850 nm. Remarkably, thiocarbonyl substitution increases the nonbonding characters in frontier molecular orbitals, which can effectively suppress the nonradiative vibrational relaxation process via reducing the reorganization energy, enabling efficient reactive oxygen species (ROS) generation under 880 nm excitation. Screened by in vitro and in vivo assays, NanoDTPA-S/RGD with high water solubility, excellent tumor-targeting ability, and photodynamic/photothermal therapy synergistic effect exhibits satisfactory phototherapeutic performance. Overall, this study demonstrates a new design of efficient NIR-triggered diketopyrrolopyrrole photosensitizer with facile installation of functional biomolecules for potential clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615798PMC
http://dx.doi.org/10.1002/advs.202407727DOI Listing

Publication Analysis

Top Keywords

diketopyrrolopyrrole photosensitizer
8
nir excitation
8
relaxation process
8
photosensitizer
5
molecular engineering
4
engineering tumor-targeting
4
tumor-targeting thione-derived
4
thione-derived diketopyrrolopyrrole
4
photosensitizer attain
4
attain nir
4

Similar Publications

Molecular Engineering of a Tumor-Targeting Thione-Derived Diketopyrrolopyrrole Photosensitizer to Attain NIR Excitation Over 850 nm for Efficient Dual Phototherapy.

Adv Sci (Weinh)

December 2024

Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.

Photosensitizers with near-infrared (NIR) excitation, especially above 800 nm which is highly desired for phototherapy, remain rare due to the fast nonradiative relaxation process induced by exciton-vibration coupling. Here, a diketopyrrolopyrrole-derived photosensitizer (DTPA-S) is developed via thionation of carbonyl groups within the diketopyrrolopyrrole skeleton, which results in a large bathochromic shift of 81 nm, endowing the photosensitizer with strong NIR absorption at 712 nm. DTPA-S is then introduced with a functional biomolecule (N-PEG-RGD) via click reaction for the construction of integrin αvβ3 receptor-targeted nano-micelles (NanoDTPA-S/RGD), which endows the photosensitizer with a further superlarge absorption redshift of 138 nm, thus extending the absorption maxima to ≈850 nm.

View Article and Find Full Text PDF

Near Infrared-II Excited Triplet Fusion Upconversion with Anti-Stokes Shift Approaching the Theoretical Limit.

J Am Chem Soc

April 2024

Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

The anti-Stokes shift represents the capacity of photon upconversion to convert low-energy photons to high-energy photons. Although triplet exciton-mediated photon upconversion presents outstanding performance in solar energy harvesting, photoredox catalysis, stereoscopic 3D printing, and disease therapeutics, the interfacial multistep triplet exciton transfer leads to exciton energy loss to suppress the anti-Stokes shift. Here, we report near infrared-II (NIR-II) excitable triplet exciton-mediated photon upconversion using a hybrid photosensitizer consisting of lead sulfide quantum dots (PbS QDs) and new surface ligands of thiophene-substituted diketopyrrolopyrrole (Th-DPP).

View Article and Find Full Text PDF

Design of donor-acceptor conjugated polymers based on diketopyrrolopyrrole for NIR-II multifunctional imaging.

J Mater Chem B

February 2024

College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China.

Diketopyrrolopyrrole (DPP) is an excellent photosensitizer and photothermal agent with the advantages of good planarity, strong electron affinity, high electron mobility, easy purification, easy structural modification and high molar absorption coefficient. It is regarded as one of the ideal choices for the design and synthesis of efficient organic photovoltaic materials. Therefore, two kinds of donor-acceptor (D-A) conjugated polymers were designed and synthesized with DPP as the acceptor, and their optical properties and applications in the near-infrared region were studied.

View Article and Find Full Text PDF

New Type Annihilator of π-Expanded Diketopyrrolopyrrole for Robust Photostable NIR-Excitable Triplet-Triplet Annihilation Upconversion.

ACS Appl Mater Interfaces

February 2024

Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.

Near-infrared light excitable triplet-triplet annihilation upconversion (NIR TTA-UC) materials have attracted interest in a variety of emerging applications such as photoredox catalysis, optogenetics, and stereoscopic 3D printing. Currently, the practical application of NIR TTA-UC materials requires substantial improvement in photostability. Here, we found that the new annihilator of π-expanded diketopyrrolopyrrole (π-DPP) cannot activate oxygen to generate superoxide anion via photoinduced electron transfer, and its electron-deficient characteristics prevent the singlet oxygen-mediated [2 + 2] cycloaddition reaction; thus, π-DPP exhibited superior resistance to photobleaching.

View Article and Find Full Text PDF

Enhancing near-infrared II photodynamic therapy with nitric oxide for eradicating multidrug-resistant biofilms in deep tissues.

Bioact Mater

March 2024

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, PR China.

Nitric oxide (NO) enhanced photodynamic therapy (PDT) is a promising approach to overcome drug tolerance and resistance to biofilm but is limited by its short excitation wavelengths and low yield of reactive oxygen species (ROS). Herein, we develop a compelling degradable polymer-based near-infrared II (NIR-II, 1000-1700 nm) photosensitizer (PNIR-II), which can maintain 50 % PDT efficacy even under a 2.6 cm tissue barrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!