AI Article Synopsis

  • Refractory black carbon (rBC) can significantly contribute to ice melt when it settles on snow and ice surfaces, and its sources include both long-range transport and local activities.
  • The study used detailed measurements and data analysis from the Antarctic Peninsula to evaluate the effects of rBC from both tourism and Southern Hemisphere fires, finding a rise in rBC concentrations during late spring-summer.
  • Results indicate that while local tourism impacts rBC levels regionally, both local and distant emissions need to be addressed to mitigate ice melt in the area.

Article Abstract

Refractory black carbon (rBC) has great potential to increase melting when deposited on snow and ice surfaces. Previous studies attributed sources and impacts of rBC in the northern Antarctic Peninsula region by investigating long-range atmospheric transport from South Hemisphere biomass burning and industrial regions or by assessing impacts from local tourism and research activities. We used high-resolution measurements of refractory rBC in a firn core collected near the northern tip of the Antarctic Peninsula, as well as atmospheric rBC from Modern-Era Retrospective Analysis for Research and Applications, Version 2, satellite measurements, modeling, burned area data, and tourism statistics, to assess combined impacts of both long-range transported rBC and locally emitted rBC. Our findings suggest that tourism activities have a regional rather than local impact and the increase in rBC concentrations during late spring-summer, influenced by tourism activities and fires in the Southern Hemisphere, can enhance ice melt. This highlights the need for strategies to reduce local and distant rBC emissions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482304PMC
http://dx.doi.org/10.1126/sciadv.adp1682DOI Listing

Publication Analysis

Top Keywords

antarctic peninsula
12
tourism activities
12
black carbon
8
rbc
8
northern antarctic
8
tourism
5
seasonal changes
4
changes black
4
carbon footprint
4
footprint antarctic
4

Similar Publications

Quantifying microplastics concentration of invertebrates from three Antarctic fjords.

Mar Pollut Bull

January 2025

University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States of America. Electronic address:

Microplastics, small pieces of plastic measuring less than five millimeters, have spread to all ecosystems, even those in the Southern Ocean around Antarctica. In particular, microplastics have been found contaminating water in emerging fjords, or inlets created by deglaciation, along the Antarctic Peninsula. Microplastics contamination puts fjord communities, which are unique and dominated by benthic species, at high risk for microplastic exposure leading to issues with feeding, endocrine disruption, and exposure to adsorbed toxins, all of which lower fecundity and survivability.

View Article and Find Full Text PDF
Article Synopsis
  • The Antarctic Peninsula has unique ecosystems, heavily relying on microorganisms for ecological balance, but there's limited knowledge about soil microbial community diversity across the region.
  • Metagenome sequencing was employed to assess soil microbes in four specific locations, revealing insights into their composition and functions.
  • Results indicated variations in bacterial types and their functions across locations, including the presence of numerous antibiotic resistance genes linked to human activities, highlighting the need for careful management of Antarctic microbial resources.
View Article and Find Full Text PDF

The West Antarctic Peninsula (WAP) is a hotspot of climate warming, evidencing glacier retreat and a decrease in the fast-ice duration. This study provides a > 30-y time-series (1987-2022) on annual and seasonal air temperatures in Potter Cove (Isla 25 de Mayo/King George Island). It investigates the interaction between warming, glacial melt, fast-ice and the underwater conditions (light, salinity, temperature, turbidity) over a period of 10 years along the fjord axis (2010-2019), and for the first time provides a unique continuous underwater irradiance time series over 5 years (2014-2018).

View Article and Find Full Text PDF

Per- and polyfluoroalkylated substances (PFAS) in the feathers and excreta of Gentoo penguins (Pygoscelis papua) from the Antarctic Peninsula.

Sci Total Environ

December 2024

Centro de Investigación para la Sustentabilidad (CIS-UNAB) & Department of Ecology and Biodiversity, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile; Centro de Resiliencia, Adaptación y Mitigación (CReAM), Universidad Mayor, Av. Alemania 281, Temuco, Chile.

Per- and polyfluoroalkyl substances (PFAS) exhibit widespread global distribution, extending to remote regions including Antarctica. Despite potential adverse effects on seabirds, PFAS exposure among Antarctic penguins remains poorly studied. We investigated the occurrence of 29 PFAS compounds in feathers and excreta of Gentoo penguins (Pygoscelis papua) from Fildes Bay, Antarctica.

View Article and Find Full Text PDF

Predicting pack-ice seal occupancy of ice floes along the Western Antarctic Peninsula.

PLoS One

December 2024

Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York, United States of America.

We explore the habitat use of Antarctic pack-ice seals by analyzing their occupancy patterns on pack-ice floes, employing a novel combination of segmented generalized linear regression and fine-scale (∼ 50 cm pixel resolution) sea ice feature extraction in satellite imagery. Our analysis of environmental factors identified ice floe size, fine-scale sea ice concentration and nearby marine topography as significantly correlated with seal haul out abundance. Further analysis between seal abundance and ice floe size identified pronounced shifts in the relationship between the number of seals hauled out and floe size, with a positive relationship up to approximately 50 m2 that diminishes for larger floe sizes and largely plateaus after 500 m2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!