AI Article Synopsis

  • Respiratory syncytial virus (RSV) and other respiratory RNA viruses, like influenza and SARS-CoV-2, significantly contribute to respiratory infections and induce reactive oxygen species (ROS) which worsen respiratory diseases.
  • * The study reveals that the byproduct 8-oxo-7,8-dihydroguanine (8-oxoGua) is not just a result of ROS damage, but a mechanism RSV uses to maintain genetic integrity by interacting with the enzyme 8-oxoguanine DNA glycosylase 1 (OGG1).
  • * Targeting OGG1's ability to recognize 8-oxoGua could offer a novel approach for developing antiviral treatments against RSV by disrupting its replication process under

Article Abstract

Respiratory syncytial virus (RSV), along with other prominent respiratory RNA viruses such as influenza and SARS-CoV-2, significantly contributes to the global incidence of respiratory tract infections. These pathogens induce the production of reactive oxygen species (ROS), which play a crucial role in the onset and progression of respiratory diseases. However, the mechanisms by which viral RNA manages ROS-induced base oxidation remain poorly understood. Here, we reveal that 8-oxo-7,8-dihydroguanine (8-oxoGua) is not merely an incidental byproduct of ROS activity but serves as a strategic adaptation of RSV RNA to maintain genetic fidelity by hijacking the 8-oxoguanine DNA glycosylase 1 (OGG1). Through RNA immunoprecipitation and next-generation sequencing, we discovered that OGG1 binding sites are predominantly found in the RSV antigenome, especially within guanine-rich sequences. Further investigation revealed that viral ribonucleoprotein complexes specifically exploit OGG1. Importantly, inhibiting OGG1's ability to recognize 8-oxoGua significantly decreases RSV progeny production. Our results underscore the viral replication machinery's adaptation to oxidative challenges, suggesting that inhibiting OGG1's reading function could be a novel strategy for antiviral intervention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515973PMC
http://dx.doi.org/10.1371/journal.ppat.1012616DOI Listing

Publication Analysis

Top Keywords

8-oxoguanine dna
8
respiratory syncytial
8
syncytial virus
8
inhibiting ogg1's
8
rna
5
respiratory
5
dna glycosylase1
4
glycosylase1 conceals
4
conceals oxidized
4
oxidized guanine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!