Several associations between the built environment and COVID-19 case distribution have been identified in previous studies. However, few studies have explored the non-linear associations between the built environment and COVID-19 at the community level. This study employed the March 2022 Shanghai COVID-19 pandemic as a case study to examine the association between built-environment characteristics and the incidence of COVID-19. A non-linear modeling approach, namely the boosted regression tree model, was used to investigate this relationship. A multi-scale study was conducted at the community level based on buffers of 5-minute, 10-minute, and 15-minute walking distances. The main findings are as follows: (1) Relationships between built environment variables and COVID-19 case distribution vary across scales of analysis at the neighborhood level. (2) Significant non-linear associations exist between built-environment characteristics and COVID-19 case distribution at different scales. Population, housing price, normalized difference vegetation index, Shannon's diversity index, number of bus stops, floor-area ratio, and distance from the city center played important roles at different scales. These non-linear results provide a more refined reference for pandemic responses at different scales from an urban planning perspective and offer useful recommendations for a sustainable COVID-19 post-pandemic response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482694 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0309019 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!