Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nosocomial infections and Antimicrobial Resistance (AMR) stand as formidable healthcare challenges on a global scale. To address these issues, various infection control protocols and personalized treatment strategies, guided by laboratory tests, aim to detect bloodstream infections (BSI) and assess the potential for AMR. In this study, we introduce a machine learning (ML) approach based on Multi-Objective Symbolic Regression (MOSR), an evolutionary approach to create ML models in the form of readable mathematical equations in a multi-objective way to overcome the limitation of standard single-objective approaches. This method leverages readily available clinical data collected upon admission to intensive care units, with the goal of predicting the presence of BSI and AMR. We further assess its performance by comparing it to established ML algorithms using both naturally imbalanced real-world data and data that has been balanced through oversampling techniques. Our findings reveal that traditional ML models exhibit subpar performance across all training scenarios. In contrast, MOSR, specifically configured to minimize false negatives by optimizing also for the F1-Score, outperforms other ML algorithms and consistently delivers reliable results, irrespective of the training set balance with F1-Score.22 and.28 higher than any other alternative. This research signifies a promising path forward in enhancing Antimicrobial Stewardship (AMS) strategies. Notably, the MOSR approach can be readily implemented on a large scale, offering a new ML tool to find solutions to these critical healthcare issues affected by limited data availability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482717 | PMC |
http://dx.doi.org/10.1371/journal.pdig.0000641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!