A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Using interpretable machine learning to predict bloodstream infection and antimicrobial resistance in patients admitted to ICU: Early alert predictors based on EHR data to guide antimicrobial stewardship. | LitMetric

AI Article Synopsis

  • Nosocomial infections and antimicrobial resistance (AMR) pose serious global healthcare challenges, motivating the need for effective detection and treatment strategies.
  • This study introduces a machine learning method called Multi-Objective Symbolic Regression (MOSR), which uses clinical data to predict bloodstream infections (BSI) and assess AMR while overcoming limitations of traditional ML approaches.
  • Results show that MOSR significantly outperforms standard ML models in predicting BSI and AMR, achieving higher F1-Scores, thus serving as a potentially scalable solution to improve Antimicrobial Stewardship (AMS) practices.

Article Abstract

Nosocomial infections and Antimicrobial Resistance (AMR) stand as formidable healthcare challenges on a global scale. To address these issues, various infection control protocols and personalized treatment strategies, guided by laboratory tests, aim to detect bloodstream infections (BSI) and assess the potential for AMR. In this study, we introduce a machine learning (ML) approach based on Multi-Objective Symbolic Regression (MOSR), an evolutionary approach to create ML models in the form of readable mathematical equations in a multi-objective way to overcome the limitation of standard single-objective approaches. This method leverages readily available clinical data collected upon admission to intensive care units, with the goal of predicting the presence of BSI and AMR. We further assess its performance by comparing it to established ML algorithms using both naturally imbalanced real-world data and data that has been balanced through oversampling techniques. Our findings reveal that traditional ML models exhibit subpar performance across all training scenarios. In contrast, MOSR, specifically configured to minimize false negatives by optimizing also for the F1-Score, outperforms other ML algorithms and consistently delivers reliable results, irrespective of the training set balance with F1-Score.22 and.28 higher than any other alternative. This research signifies a promising path forward in enhancing Antimicrobial Stewardship (AMS) strategies. Notably, the MOSR approach can be readily implemented on a large scale, offering a new ML tool to find solutions to these critical healthcare issues affected by limited data availability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482717PMC
http://dx.doi.org/10.1371/journal.pdig.0000641DOI Listing

Publication Analysis

Top Keywords

machine learning
8
antimicrobial resistance
8
antimicrobial stewardship
8
data
5
interpretable machine
4
learning predict
4
predict bloodstream
4
bloodstream infection
4
antimicrobial
4
infection antimicrobial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: