Programmed BRD9 Degradation and Hedgehog Signaling Activation via Silk-Based Core-Shell Microneedles Promote Diabetic Wound Healing.

Adv Sci (Weinh)

Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai, 200125, China.

Published: December 2024

Wound healing impairment in diabetes mellitus is associated with an excessive inflammatory response and defective regeneration capability with suppressed Hedgehog (Hh) signaling. The bromodomain protein BRD9, a subunit of the non-canonical BAF chromatin-remodeling complex, is critical for macrophage inflammatory response. However, whether the epigenetic drug BRD9 degrader can attenuate the sustained inflammatory state of wounds in diabetes remains unclear. Without a bona fide immune microenvironment, Hh signaling activation fails to effectively rescue the suppressed proliferative ability of dermal fibroblasts and the vascularization of endothelial cells. Therefore, a silk-based core-shell microneedle (MN) patch is proposed to dynamically modulate the wound immune microenvironment and the regeneration process. Specifically, the BRD9 degrader released from the shell of the MNs mitigated the excessive inflammatory response in the early phase. Subsequently, the positively charged Hh signaling agonist is released from the negatively charged core of the silk fibroin nanofibers and promotes the phase transition from inflammation to regeneration, including re-epithelialization, collagen deposition, and angiogenesis. These findings suggest that the programmed silk-based core-shell MN patch is an ideal therapeutic strategy for effective skin regeneration in diabetic wounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11615742PMC
http://dx.doi.org/10.1002/advs.202404130DOI Listing

Publication Analysis

Top Keywords

silk-based core-shell
12
inflammatory response
12
hedgehog signaling
8
signaling activation
8
wound healing
8
excessive inflammatory
8
brd9 degrader
8
immune microenvironment
8
programmed brd9
4
brd9 degradation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!