Carbon-based catalysts hold significant promise for photocatalytic hydrogen evolution. A critical challenge lies in optimizing the balance between electron longevity and its accumulation to avoid bottlenecks in photocatalytic efficiency. In this study, we introduce an innovative and efficient strategy for the rapid extraction (<100 fs) of photoinduced free electrons from a carbon-based catalyst without forming additional metal-based heterojunction hybrids. This method effectively prevents excessive accumulation of free carriers within the catalyst. The rapidly extracted electrons are then utilized for photocatalytic hydrogen production, resulting in a 10-fold increase in activity compared to the pristine catalyst, with platinum (3 wt%) used as a cocatalyst. Our strategy significantly enhances the performance of a state-of-the-art catalyst, offering a clean and cost-effective method for producing clean energy. This work demonstrates how a fundamental understanding of molecular-level phenomena and their optimization can pave the way for delivering clean and affordable energy to society.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.4c02556DOI Listing

Publication Analysis

Top Keywords

photocatalytic hydrogen
8
role trap
4
trap optimization
4
optimization heterostructure
4
heterostructure carbon
4
carbon nitride
4
nitride methodology
4
methodology enhance
4
enhance photocatalytic
4
hydrogen production
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!