AI Article Synopsis

  • Exposing wheat to physical mutagens generated new genetic resources that may help in managing various environmental stresses.
  • A high throughput GBS-DArTseq™ assay revealed significant genetic diversity among 33 stable wheat mutants, identifying over 1.5 million PAV markers distributed across different wheat chromosomes, with the highest counts found on Chr-7D and Chr-7B.
  • The study highlighted specific mutants with notable PAV counts linked to beneficial traits like disease resistance, enhanced photosynthesis, larger grain size, and improved yield, proving useful for molecular geneticists and breeders in developing resilient wheat varieties.

Article Abstract

Exposing genetic material with physical mutagens can create novel genetic resources capable of combating different stresses. High throughput GBS-DArTseq™ assay was deployed to estimate genetic diversity of 33 newly developed stable wheat mutants as compared to the wild type. The identified 1,57,608 PAVs markers were randomly distributed across wheat chromosomes and sub-genomes with the highest number detected on Chr-7D (2877) and Chr-7B (2711). The B sub-genome contained the most PAVs followed by D and A-sub genome. Among mutant lines, Pb-M-2061 and Pb-M-59 had the highest PAV count, while Pb-M-605 and Pb-M-196 had the lowest. A total of 7,910 PAVs were consistently present over all replicates, with 3,252 specifically present in mutants and absent in wild type. The maximum PAVs (1480) were found in Pb-M-1027 and Pb-M-1323 (656). Functional characterization revealed that out of 3,252, 1,238 were found in wheat transcriptome database that contained 152 characterized and 1,196 uncharacterized genes. COGs and GO-terms analysis linked many PAVs with pathways involving signaling, metabolism and defense. Maximum number of gene-containing PAVs were identified in Pb-M-1027, Pb-M-2302 and Pb-M-1323 which were involved in tolerance to diseases and abiotic stresses, improved photosynthetic efficiency, larger grain size, increased grain yield and harvest index pathways. This study provides valuable insights into the genetic diversity and potential agronomic benefits of PAVs in wheat mutant lines. These findings can help molecular geneticist and breeders for exploiting the induced genetic diversity for unravelling the genetic circuits as well as exploiting in wheat breeding for developing resilient cultivars.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10142-024-01424-wDOI Listing

Publication Analysis

Top Keywords

mutant lines
12
genetic diversity
12
newly developed
8
wheat mutant
8
wild type
8
pavs
7
wheat
6
genetic
6
genotyping sequencing
4
sequencing strategy
4

Similar Publications

MaGA20ox2f, an OsSD1 homolog, regulates flowering time and fruit yield in banana.

Mol Breed

January 2025

Institute of Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research On Fruit Tree, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 Guangdong China.

Unlabelled: Previous studies illustrated that two banana GA20 oxidase2 (MaGA20ox2) genes, and , are implicated in controlling banana growth and development; however, the biological function of each gene remains unknown. Ma04g15900 protein (termed MaGA20ox2f in this article) is the closest homolog to the Rice SD1 (encoded by 'green revolution gene', ) in the banana genome. The expression of is confined to leaves, peduncles, fruit peels, and pulp.

View Article and Find Full Text PDF

Resveratrol is an important phytoalexin that adapts to and responds to stressful conditions and plays various roles in health and medical therapies. However, it is only found in a limited number of plant species in low concentrations, which hinders its development and utilization. Chalcone synthase (CHS) and stilbene synthase (STS) catalyze the same substrates to produce flavonoids and resveratrol, respectively.

View Article and Find Full Text PDF

An endoplasmic reticulum-localized Cu transporter, PhHMA5II1, interacts with copper chaperones and plays an important role in Cu detoxification in petunia. Copper (Cu) is an essential element for plant growth but toxic when present in excess. In this study we present the functional characterization of a petunia (Petunia hybrida) P-type heavy-metal ATPases (HMAs), PhHMA5II1.

View Article and Find Full Text PDF

Background: Mutations in the structural domain of the epidermal growth factor receptor (EGFR) kinase represent a critical pathogenetic factor in non-small cell lung cancer (NSCLC). Small-molecule EGFR-tyrosine kinase inhibitors (TKIs) serve as first-line therapeutic agents for the treatment of EGFR-mutated NSCLC. But the resistance mutations of EGFR restrict the clinical application of EGFR-TKIs.

View Article and Find Full Text PDF

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!