Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the extensive use of fossil energy, people will face the depletion of fossil energy and increasingly severe problems. As a non-polluting, high specific energy density energy source, hydrogen energy is expected to solve this problem by producing hydrogen through electrolysis of water through renewable energy power generation. Water electrolysis technology involves two important half-reactions: the cathode hydrogen evolution reaction (HER) and anode oxygen evolution reaction (OER). The OER is a 4-electron transfer process with a high energy barrier. In order to achieve higher energy conversion, OER catalyst technology is a key part of the process. Researchers have conducted a lot of research into high-performance, high-stability, and highly economical OER catalysts, among which oxyhydroxide (MOOH), as an active substance for OER, has received particular attention. This article provides a timely follow-up to the research on oxyhydroxides, first introducing the two catalytic mechanisms of OER, namely the adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM). Then, strategies are proposed to improve OER catalytic performance by increasing catalytic active surface area/active sites, optimizing intermediate adsorption energy based on the AEM, triggering the LOM, and enhancing catalyst stability. Finally, the challenges and future development directions of MOOH catalysts are analyzed, which provides guidance for the design and preparation of high-performance OER catalysts in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr02400a | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!