Actin depolymerizing factors (ADFs), like other actin-binding proteins (ABPs), are modified by phosphorylation to regulate the dynamics of the actin filaments, thereby functioning in various processes throughout the plant lifecycle. In this study, we found that the Arabidopsis thaliana cytoplasmic kinase AGC1.7 interacts with ADF7 in vitro and in vivo. AGC1.7 phosphorylates ADF7 at its Ser-6, Ser-103 and Ser-104 residues in vitro, while replacing these residues with alanine promotes ADF7-mediated actin depolymerization in vitro. Expression of the phosphorylation-mimetic mutant protein ADF7 driven by the pollen-specific LAT52 promoter fully rescues the defects in germination rate, silique length and seeds per silique in both adf7-2 and agc1.5 agc1.7 (agcdm) mutants. Our data establish a model whereby AGC1.7-mediated ADF7 phosphorylation plays an important role in pollen germination and pollen tube growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.15192 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!